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Chapter 10

Series and Approximations

An important theme in this book is to give constructive definitions of math-
ematical objects. Thus, for instance, if you needed to evaluate

∫ 1

0

e−x2

dx,

you could set up a Riemann sum to evaluate this expression to any desired
degree of accuracy. Similarly, if you wanted to evaluate a quantity like e.3

from first principles, you could apply Euler’s method to approximate the
solution to the differential equation

y′(t) = y(t), with initial condition y(0) = 1,

using small enough intervals to get a value for y(.3) to the number of decimal
places you needed. You might pause for a moment to think how you would
get sin(5) to 7 decimal places—you wouldn’t do it by drawing a unit circle
and measuring the y-coordinate of the point where this circle is intersected
by the line making an angle of 5 radians with the x-axis! Defining the sine
function to be the solution to the second-order differential equation y′′ = −y
with initial conditions y = 0 and y′ = 1 when t = 0 is much better if we
actually want to construct values of the function with more than two decimal
accuracy.

What these examples illustrate is the fact that the only functions our Ordinary arithmetic
lies at the heart

of all calculations
brains or digital computers can evaluate directly are those involving the
arithmetic operations of addition, subtraction, multiplication, and division.
Anything else we or computers evaluate must ultimately be reducible to these
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four operations. But the only functions directly expressible in such terms are
polynomials and rational functions (i.e., quotients of one polynomial by an-
other). When you use your calculator to evaluate ln 2, and the calculator
shows .69314718056, it is really doing some additions, subtractions, multipli-
cations, and divisions to compute this 11-digit approximation to ln 2 . There
are no obvious connections to logarithms at all in what it does. One of the
triumphs of calculus is the development of techniques for calculating highly
accurate approximations of this sort quickly. In this chapter we will explore
these techniques and their applications.

10.1 Approximation Near a Point or

Over an Interval

Suppose we were interested in approximating the sine function—we might
need to make a quick estimate and not have a calculator handy, or we might
even be designing a calculator. In the next section we will examine a number
of other contexts in which such approximations are helpful. Here is a third
degree polynomial that is a good approximation in a sense which will be
made clear shortly:

P (x) = x − x3

6
.

(You will see in section 2 where P (x) comes from.)
If we compare the values of sin(x) and P (x) over the interval [0, 1] we get

the following:

x sin x P (x) sin x − P (x)

0.0
.2
.4
.6
.8

1.0

0.0
.198669
.389418
.564642
.717356
.841471

0.0
.198667
.389333
.564000
.714667
.833333

0.0
.000002
.000085
.000642
.002689
.008138

The fit is good, with the largest difference occurring at x = 1.0, where the
difference is only slightly greater than .008.

If we plot sin(x) and P (x) together over the interval [0, π] we see the ways
in which P (x) is both very good and not so good. Over the initial portion
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of the graph—out to around x = 1—the graphs of the two functions seem to
coincide. As we move further from the origin, though, the graphs separate
more and more. Thus if we were primarily interested in approximating sin(x)
near the origin, P (x) would be a reasonable choice. If we need to approximate
sin(x) over the entire interval, P (x) is less useful.

1 2 3

1

x

y

y = sin(x)
y = P(x)

On the other hand, consider the second degree polynomial

Q(x) = −.4176977x2 + 1.312236205x− .050465497

(You will see how to compute these coefficients in section 6.) When we graph
Q(x) and sin(x) together we get the following:

1 2 3

1

x

y

y = sin(x)

y = Q(x)

While Q(x) does not fits the graph of sin(x) as well as P (x) does near the
origin, it is a good fit overall. In fact, Q(x) exactly equals sin(x) at 4 values
of x, and the greatest separation between the graphs of Q(x) and sin(x) over
the interval [0, π] occurs at the endpoints, where the distance between the
graphs is .0505 units.

What we have here, then, are two kinds of approximation of the sine
function by polynomials: we have a polynomial P (x) that behaves very much
like the sine function near the origin, and we have another polynomial Q(x) There’s more than one

way to make the ”best
fit” to a given curve

that keeps close to the sine function over the entire interval [0, π]. Which
one is the “better” approximation depends on our needs. Each solves an
important problem. Since finding approximations near a point has a neater
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solution—Taylor polynomials—we will start with this problem. We will turn
to the problem of finding approximations over an interval in section 6.

10.2 Taylor Polynomials

The general setting. In chapter 3 we discovered that functions were lo-
cally linear at most points—when we zoomed in on them they looked more
and more like straight lines. This fact was central to the development of
much of the subsequent material. It turns out that this is only the initial
manifestation of an even deeper phenomenon: Not only are functions locally
linear, but, if we don’t zoom in quite so far, they look locally like parabolas.
From a little further back still they look locally like cubic polynomials, etc.
Later in this section we will see how to use the computer to visualize these
“local parabolizations”, “local cubicizations”, etc. Let’s summarize the idea
and then explore its significance:

The functions of interest to calculus look locally like polynomi-
als at most points of their domain. The higher the degree of
the polynomial, the better typically will be the fit.

Comments The “at most points” qualification is because of exceptions like
those we ran into when we explored locally linearity. The function |x|, for
instance, was not locally linear at x = 0—it’s not locally like any polynomial
of higher degree at that point either. The issue of what “goodness of fit”
means and how it is measured is a subtle one which we will develop over
the course of this section. For the time being, your intuition is a reasonable
guide—one fit to a curve is better than another near some point if it “shares
more phosphor” with the curve when they are graphed on a computer screen
centered at the given point.

The fact that functions look locally like polynomials has profound impli-
cations conceptually and computationally. It means we can often determineThe behavior of a

function can often be
inferred from the
behavior of a local
polynomialization

the behavior of a function locally by examining the corresponding behavior
of what we might call a “local polynomialization” instead. In particular,
to find the values of a function near some point, or graph a function near
some point, we can deal with the values or graph of a local polynomialization
instead. Since we can actually evaluate polynomials directly, this can be a
major simplification.
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There is an extra feature to all this which makes the concept particularly
attractive: not only are functions locally polynomial, it is easy to find the We want the

best fit at x = 0coefficients of the polynomials. Let’s see how this works. Suppose we had
some function f(x) and we wanted to find the fifth degree polynomial that
best fit this function at x = 0. Let’s call this polynomial

P (x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5.

To determine P , we need to find values for the six coefficients a0, a1, a2, a3,
a4, a5.

Before we can do this, we need to define what we mean by the “best” fit to
f at x = 0. Since we have six unknowns, we need six conditions. One obvious
condition is that the graph of P should pass through the point (0, f(0)). But The best fit should

pass through the point
(0, f(0))

this is equivalent to requiring that P (0) = f(0). Since P (0) = a0, we thus
must have a0 = f(0), and we have found one of the coefficients of P (x). Let’s
summarize the argument so far:

The graph of a polynomial passes through the point (0, f(0)) if
and only if the polynomial is of the form

f(0) + a1x + a2x
2 + · · · .

But we’re not interested in just any polynomial passing through the right The best fit should
have the right slope at

(0, f(0))
point; it should be headed in the right direction as well. That is, we want
the slope of P at x = 0 to be the same as the slope of f at this point—we
want P ′(0) = f ′(0). But

P ′(x) = a1 + 2a2x + 3a3x
2 + 4a4x

3 + 5a5x
4,

so P ′(0) = a1. Our second condition therefore must be that a1 = f ′(0).
Again, we can summarize this as

The graph of a polynomial passes through the point (0, f(0))
and has slope f ′(0) there if and only if it is of the form

f(0) + f ′(0)x + a2x
2 + · · · .
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Note that at this point we have recovered the general form for the local linear
approximation to f at x = 0: L(x) = f(0) + f ′(0)x.

But there is no reason to stop with the first derivative. Similarly, we
would want the way in which the slope of P (x) is changing—we are now
talking about P ′′(0)—to behave the way the slope of f is changing at x = 0,
etc. Each higher derivative controls a more subtle feature of the shape of the
graph. We now see how we could formulate reasonable additional conditions
which would determine the remaining coefficients of P (x):

Say that P (x) is the best fit to f(x) at the point x = 0 if

P (0) = f(0), P ′(0) = f ′(0), P ′′(0) = f ′′(0), . . . , P (5)(0) = f (5)(0).

Since P (x) is a fifth degree polynomial, all the derivatives of P beyond
the fifth will be identically 0, so we can’t control their values by altering
the values of the ak. What we are saying, then, is that we are using as our
criterion for the best fit that all the derivatives of P as high as we can controlThe final criterion

for best fit at x = 0 them have the same values at x = 0 as the corresponding derivatives of f .
While this is a reasonable definition for something we might call the

“best fit” at the point x = 0, it gives us no direct way to tell how good the fit
really is. This is a serious shortcoming—if we want to approximate function
values by polynomial values, for instance, we would like to know how many
decimal places in the polynomial values are going to be correct. We will
take up this question of goodness of fit later in this section; we’ll be able to
make measurements that allow us to to see how well the polynomial fits the
function. First, though, we need to see how to determine the coefficients of
the approximating polynomials and get some practice manipulating them.

Note on Notation: We have used the notation f (5)(x) to denote theNotation for
higher derivatives fifth derivative of f(x) as a convenient shorthand for f ′′′′′(x), which is harder

to read. We will use this throughout.

Finding the coefficients We first observe that the derivatives of P at
x = 0 are easy to express in terms of a1, a2, . . . . We have

P ′(x) = a1 + 2 a2x + 3 a3x
2 + 4 a4x

3 + 5 a5x
4,

P ′′(x) = 2 a2 + 3 · 2 a3x + 4 · 3 a4x
2 + 5 · 4 a5x

3,

P (3)(x) = 3 · 2 a3 + 4 · 3 · 2 a4x + 5 · 4 · 3 a5x
2,

P (4)(x) = 4 · 3 · 2 a4 + 5 · 4 · 3 · 2 a5x,

P (5)(x) = 5 · 4 · 3 · 2 a5.
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Thus P ′′(0) = 2 a2, P (3)(0) = 3 · 2 a3, P (4)(0) = 4 · 3 · 2 a4, and P (5)(0) =
5 · 4 · 3 · 2 a5 .

We can simplify this a bit by introducing the factorial notation, in which
we write n! = n · (n−1) · (n−2) · · ·3 ·2 ·1 . This is called “n factorial”. Thus, Factorial notation

for example, 7! = 7 · 6 · 5 · 4 · 3 · 2 · 1 = 5040. It turns out to be convenient to
extend the factorial notation to 0 by defining 0! = 1. (Notice, for instance,
that this makes the formulas below work out right.) In the exercises you will
see why this extension of the notation is not only convenient, but reasonable
as well!

With this notation we can express compactly the equations above as The desired rule for
finding the coefficientsP (k)(0) = k! ak for k = 0, 1, 2, . . . 5 . Finally, since we want P (k)(0) = f (k)(0),

we can solve for the coefficients of P (x):

ak =
f (k)(0)

k!
for k = 0, 1, 2, 3, 4, 5.

We can now write down an explicit formula for the fifth degree polynomial
which best fits f(x) at x = 0 in the sense we’ve put forth:

P (x) = f(0) + f ′(0)x +
f (2)(0)

2!
x2 +

f (3)(0)

3!
x3 +

f (4)(0)

4!
x4 +

f (5)(0)

5!
x5.

We can express this more compactly using the Σ–notation we introduced in
the discussion of Riemann sums in chapter 6:

P (x) =
5∑

k=0

f (k)(0)

k!
xk.

We call this the fifth degree Taylor polynomial for f(x). It is sometimes
also called the fifth order Taylor polynomial.

It should be obvious to you that we can generalize what we’ve done above
to get a best fitting polynomial of any degree. Thus

General rule for
the Taylor polynomial

at x = 0

The Taylor polynomial of degree n approximating
the function f(x) at x = 0 is given by the formula

Pn(x) =

n∑

k=0

f (k)(0)

k!
xk.
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We also speak of the Taylor polynomial centered at x = 0.

Example. Consider f(x) = sin(x). Then for n = 7 we have

f(x) = sin(x), f(0) = 0,

f ′(x) = cos(x), f ′(0) = +1,

f (2)(x) = − sin(x), f (2)(0) = 0,

f (3)(x) = − cos(x), f (3)(0) = −1,

f (4)(x) = sin(x), f (4)(0) = 0,

f (5)(x) = cos(x), f (5)(0) = +1,

f (6)(x) = − sin(x), f (6)(0) = 0,

f (7)(x) = − cos(x), f (7)(0) = −1.

From this we can see that the pattern 0, +1, 0 , −1, . . . will repeat forever.
Substituting these values into the formula we get that for any odd integer n
the n-th degree Taylor polynomial for sin(x) is

Pn(x) = x − x3

3!
+

x5

5!
− x7

7!
+ · · · ± xnn!.

Note that P3(x) = x−x3/6, which is the polynomial we met in section 1.
We saw there that this polynomial seemed to fit the graph of the sine function
only out to around x = 1. Now, though, we have a way to generate poly-
nomial approximations of higher degrees, and we would expect to get better
fits as the degree of the approximating polynomial is increased. To see how
closely these polynomial approximations follow sin(x), here’s the graph of
sin(x) together with the Taylor polynomials of degrees n = 1, 3, 5, . . . , 17
plotted over the interval [0, 7.5]:

n = 3

n = 5

n = 7

n = 9

n = 11

n = 13

n = 15

n = 17n = 1

x

y
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While each polynomial eventually wanders off to infinity, successive poly- The higher the degree
of the polynomial,
the better the fit

nomials stay close to the sine function for longer and longer intervals—the
Taylor polynomial of degree 17 is just beginning to diverge visibly by the
time x reaches 2π. We might expect that if we kept going, we could find
Taylor polynomials that were good fits out to x = 100, or x = 1000. This is
indeed the case, although they would be long and cumbersome polynomials
to work with. Fortunately, as you will see in the exercises, with a little clev-
erness we can use a Taylor polynomial of degree 9 to calculate sin(100) to 5
decimal place accuracy.

Other Taylor Polynomials: In a similar fashion, we can get Taylor poly- Approximating
polynomials for

other basic functions
nomials for other functions. You should use the general formula to verify the
Taylor polynomials for the following basic functions. (The Taylor polynomial
for sin(x) is included for convenient reference.)

f(x) Pn(x)

sin(x) x − x3

3!
+

x5

5!
− x7

7!
+ · · · ± xn

n!
(n odd)

cos(x) 1 − x2

2!
+

x4

4!
− x6

6!
+ · · · ± xn

n!
(n even)

ex 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · + xn

n!

ln (1 − x) −
(

x +
x2

2
+

x3

3
+

x4

4
+ · · ·+ xn

n

)

1

1 − x
1 + x + x2 + x3 + · · · + xn

Taylor polynomials at points other than x = 0. Using exactly the General rule for
the Taylor polynomial

at x = a
same arguments we used to develop the best-fitting polynomial at x = 0,
we can derive the more general formula for the best-fitting polynomial at
any value of x. Thus, if we know the behavior of f and its derivatives at
some point x = a, we would like to find a polynomial Pn(x) which is a good
approximation to f(x) for values of x close to a.

Since the expression x−a tells us how close x is to a, we use it (instead of
the variable x itself) to construct the polynomials approximating f at x = a:

Pn(x) = b0 + b1(x − a) + b2(x − a)2 + b3(x − a)3 + · · ·+ bn(x − a)n.
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You should be able to apply the reasoning we used above to derive the fol-
lowing:

The Taylor polynomial of degree n centered at x = a approx-
imating the function f(x) is given by the formula

Pn(x) = f(a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · · + fn(a)

n!
(x − a)n

=
n∑

k=0

f (k)(a)

k!
(x − a)k.

Program: TAYLOR

Set up GRAPHICS

DEF fnfact(m)

P = 1

FOR r = 2 TO m

P = P * r

NEXT r

fnfact = P

END DEF

DEF fnpoly(x)

Sum = x

Sign = -1

FOR k = 3 TO 17 STEP 2

Sum = Sum + Sign * x^k/fnfact(k)

Sign = (-1) * Sign

NEXT k

fnpoly = Sum

END DEF

FOR x = 0 TO 3.14 STEP .01

Plot the line from (x, fnpoly(x)) to (x + .01, fnpoly(x + .01))
NEXT x

A computer program for graphing Taylor polynomials Shown above
is a program that evaluates the 17-th degree Taylor polynomial for sin(x) and
graphs it over the interval [0, 3.14]. The first seven lines of the program con-
stitute a subroutine for evaluating factorials. The syntax of such subroutines
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varies from one computer language to another, so be sure to use the format
that’s appropriate for you. You may even be using a language that already
knows how to compute factorials, in which case you can omit the subroutine.
The second set of 9 lines defines the function poly which evaluates the 17-
th degree Taylor polynomial. Note the role of the variable Sign—it simply
changes the sign back and forth from positive to negative as each new term
is added to the sum. As usual, you will have to put in commands to set up
the graphics and draw lines in the format your computer language uses. You
can modify this program to graph other Taylor polynomials.

New Taylor Polynomials from Old

Given a function we want to approximate by Taylor polynomials, we could
always go straight to the general formula for deriving such polynomials. On
the other hand, it is often possible to avoid a lot of tedious calculation of
derivatives by using a polynomial we’ve already calculated. It turns out that
any manipulation on Taylor polynomials you might be tempted to try will
probably work. Here are some examples to illustrate the kinds of manipula-
tions that can be performed on Taylor polynomials.

Substitution in Taylor Polynomials. Suppose we wanted the Taylor
polynomial for ex2

. We know from what we’ve already done that for any
value of u close to 0,

eu ≈ 1 + u +
u2

2!
+

u3

3!
+

u4

4!
+ · · · + un

n!
.

In this expression u can be anything, including another variable expression.
For instance, if we set u = x2, we get the Taylor polynomial

ex2

= eu

≈ 1 + u +
u2

2!
+

u3

3!
+

u4

4!
+ · · ·+ un

n!

= 1 + (x2) +
(x2)2

2!
+

(x2)3

3!
+

(x2)4

4!
+ · · ·+ (x2)n

n!

= 1 + x2 +
x4

2!
+

x6

3!
+

x8

4!
+ · · ·+ x2n

n!
.

You should check to see that this is what you get if you apply the general
formula for computing Taylor polynomials to the function ex2

.
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Similarly, suppose we wanted a Taylor polynomial for 1/(1 + x2). We
could start with the approximation given earlier:

1

1 − u
≈ 1 + u + u2 + u3 + · · · + un.

If we now replace u everywhere by −x2, we get the desired expansion:

1

1 + x2
=

1

1 − (−x2)
=

1

1 − u

≈ 1 + u + u2 + u3 + · · · + un

= 1 + (−x2) + (−x2)2 + (−x2)3 + · · ·+ (−x2)n

= 1 − x2 + x4 − x6 + · · · ± x2n.

Again, you should verify that if you start with f(x) = 1/(1 + x2) and apply
to f the general formula for deriving Taylor polynomials, you will get the
preceding result. Which method is quicker?

Multiplying Taylor Polynomials. Suppose we wanted the 5-th degree
Taylor polynomial for e3x · sin(2x). We can use substitution to write down
polynomial approximations for e3x and sin(2x), so we can get an approxima-
tion for their product by multiplying the two polynomials:

e3x · sin(2x)

≈
(

1 + (3x) +
(3x)2

2!
+

(3x)3

3!
+

(3x)4

4!
+

(3x)5

5!

) (

(2x) − (2x)3

3!
+

(2x)5

5!

)

≈ 2x + 6x2 +
23

3
x3 + 5x4 − 61

60
x5.

Again, you should try calculating this polynomial directly from the general
rule, both to see that you get the same result, and to appreciate how much
more tedious the general formula is to use in this case.

In the same way, we can also divide Taylor polynomials, raise them to
powers, and chain them by composition. The exercises provide examples of
some of these operations.

Differentiating Taylor Polynomials. Suppose we know a Taylor polyno-
mial for some function f . If g is the derivative of f , we can immediately get a
Taylor polynomial for g (of degree one less) by differentiating the polynomial
we know for f . You should review the definition of Taylor polynomial to see
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why this is so. For instance, suppose f(x) = 1/(1−x) and g(x) = 1/(1−x)2.
Verify that f ′(x) = g(x). It then follows that

1

(1 − x)2
=

d

dx

(
1

1 − x

)

≈ d

dx
(1 + x + x2 + · · ·+ xn)

= 1 + 2x + 3x2 + · · ·+ nxn−1.

Integrating Taylor Polynomials. Again suppose we have functions f(x)
and g(x) with f ′(x) = g(x), and suppose this time that we know a Taylor
polynomial for g. We can then get a Taylor polynomial for f by antidifferen-
tiating term by term. For instance, we find in chapter 11 that the derivative
of arctan(x) is 1/(1 + x2), and we have seen above how to get a Taylor
polynomial for 1/(1 + x2). Therefore we have

arctanx =

∫ x

0

1

1 + t2
dt ≈

∫ x

0

(
1 − t2 + t4 − t6 + · · · ± t2n

)
dt

= t − 1

3
t3 +

1

5
t5 − · · · ± 1

2n + 1
t2n+1

∣
∣
∣
∣

x

0

= x − 1

3
x3 +

1

5
x5 − · · · ± 1

2n + 1
x2n+1.

Goodness of fit

Let’s turn to the question of measuring the fit between a function and one of Graph the difference
between a function and

its Taylor polynomial
its Taylor polynomials. The ideas here have a strong geometric flavor, so you
should use a computer graphing utility to follow this discussion. Once again,
consider the function sin(x) and its Taylor polynomial P (x) = x − x3/6.
According to the table in section 1, the difference sin(x) − P (x) got smaller
as x got smaller. Stop now and graph the function y = sin(x) − P (x) near
x = 0. This will show you exactly how sin(x) − P (x) depends on x. If
you choose the interval −1 ≤ x ≤ 1 (and your graphing utility allows its
vertical and horizontal scales to be set independently of each other), your
graph should resemble this one.

x

y

y = sin(x) − P(x)

−1 1

−0.008

0.008
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This graph looks very much like a cubic polynomial. If it really is a cubic,The difference looks
like a power of x we can figure out its formula, because we know the value of sin(x) − P (x) is

about .008 when x = 1. Therefore the cubic should be y = .008 x3 (because
then y = .008 when x = 1). However, if you graph y = .008 x3 together
with y = sin(x) − P (x), you should find a poor match (the left-hand figure,
below.) Another possibility is that sin(x) − P (x) is more like a fifth degree
polynomial. Plot y = .008 x5; it’s so close that it “shares phosphor” with
sin(x) − P (x) near x = 0.

x

y

y = sin(x) − P(x)
y = .008x3

−1 1

−0.008

0.008

x

y

y = sin(x) − P(x)

y = .008x5

−1 1

−0.008

0.008

If sin(x) − P (X) were exactly a multiple of x5, then (sin x − P (x))/x5Finding the multiplier

would be constant and would equal the value of the multiplier. What we
actually find is this:

x
sin x − P (x)

x5

1.0 .0081377
0.5 .0082839
0.1 .0083313
0.05 .0083328
0.01 .0083333

suggesting lim
x→0

sin x − P (x)

x5
= .008333 . . . .

Thus, although the ratio is not constant, it appears to converge to a definiteHow P (x) fits sin(x)

value—which we can take to be the value of the multipier:

sin x − P (x) ≈ .008333 x5 when x ≈ 0.

We say that sin(x) − P (x) has the same order of magnitude as x5 as x → 0.
So sin(x) − P (x) is about as small as x5. Thus, if we know the size of x5 we
will be able to tell how close sin(x) and P (x) are to each other.

A rough way to measure how close two numbers are is to count the numberComparing
two numbers of decimal places to which they agree. But there are pitfalls here; for instance,

none of the decimals of 1.00001 and 0.99999 agree, even though the difference
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between the two numbers is only 0.00002. This suggests that a good way to
compare two numbers is to look at their difference. Therefore, we say

A = B to k decimal places means A − B = 0 to k decimal places

Now, a number equals 0 to k decimal places precisely when it rounds off to

0 (when we round it to k decimal places). Since X rounds to 0 to k decimal
places if and only |X| < .5× 10−k, we finally have a precise way to compare
the size of two numbers:

A = B to k decimal places means |A − B| < .5 × 10−k.

Now we can say how close P (x) is to sin(x). Since x is small, we can take What the fit means
computationallythis to mean x = 0 to k decimal places, or |x| < .5 × 10−k. But then,

|x5 − 0| = |x − 0|5 < (.5 × 10−k)5 < .5 × 10−5k−1

(since .55 = .03125 < .5 × 10−1). In other words, if x = 0 to k decimal
places, then x5 = 0 to 5k + 1 places. Since sin(x)−P (x) has the same order
of magnitude as x5 as x → 0, sin(x) = P (x) to 5k + 1 places as well. In fact,
because the multiplier in the relation

sin x − P (x) ≈ .008333 x5 (x ≈ 0)

is .0083. . . , we gain two more decimal places of accuracy. (Do you see why?)
Thus, finally, we see how reliable the polynomial P (x) = x − x3/6 is for
calculating values of sin(x):

When x = 0 to k decimal places of accuracy, we can use P (x)
to calculate the first 5k+3 decimal places of the value of sin(x).

Here are a few examples comparing P (x) to the exact value of sin(x):

x P (x) sin(x)

.0372 .0371914201920 .037194207856 . . .

.0086 .0085998939907 .008599893991 . . .

.0048 .0047999815680000 .0047999815680212 . . .

The underlined digits are guaranteed to be correct, based on the number of
decimal places for which x agrees with 0. (Note that, according to our rule,
.0086 = 0 to one decimal place, not two.)
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Taylor’s theorem

Taylor’s theorem is the generalization of what we have just seen; it describesOrder of magnitude

the goodness of fit between an arbitrary function and one of its Taylor poly-
nomials. We’ll state three versions of the theorem, gradually uncovering
more information. To get started, we need a way to compare the order of
magnitude of any two functions.

We say that ϕ(x) has the same order of magnitude as q(x)
as x → a, and we write ϕ(x) = O(q(x)) as x → a, if there is a
constant C for which

lim
x→a

ϕ(x)

q(x)
= C.

Now, when limx→a ϕ(x)/q(x) is C, we have

ϕ(x) ≈ Cq(x) when x ≈ a.

We’ll frequently use this relation to express the idea that ϕ(x) has the same
order of magnitude as q(x) as x → a.

The symbol O is an upper case “oh”. When ϕ(x) = O(q(x)) as x → a,‘Big oh’ notation

we say ϕ(x) is ‘big oh’ of q(x) as x approaches a. Notice that the equal sign
in ϕ(x) = O(q(x)) does not mean that ϕ(x) and O(q(x)) are equal; O(q(x))
isn’t even a function. Instead, the equal sign and the O together tell us that
ϕ(x) stands in a certain relation to q(x).

Taylor’s theorem, version 1. If f(x) has derivatives up to
order n at x = a, then

f(x) = f(a) +
f ′(a)

1!
(x − a) + · · ·+ f (n)(a)

n!
(x − a)n + R(x),

where R(x) = O((x − a)n+1) as x → a. The term R(x) is called
the remainder.

This version of Taylor’s theorem focusses on the general shape of theInformal language

remainder function. Sometimes we just say the remainder has “order n+1”,
using this short phrase as an abbreviation for “the order of magnitude of the
function (x − a)n+1”. In the same way, we say that a function and its n-th

degree Taylor polynomial at x = a agree to order n + 1 as x → a.
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Notice that, if ϕ(x) = O(x3) as x → 0, then it is also true that ϕ(x) = O(x2) (as x → 0). This
implies that we should take ϕ(x) = O(xn) to mean “ϕ has at least order n” (instead of simply
“ϕ has order n”). In the same way, it would be more accurate (but somewhat more cumbersome)
to say that ϕ = O(q) means “ϕ has at least the order of magnitude of q”.

As we saw in our example, we can translate the order of agreement be- Decimal places
of accuracytween the function and the polynomial into information about the number of

decimal places of accuracy in the polynomial approximation. In particular, if
x−a = 0 to k decimal places, then (x−a)n = 0 to nk places, at least. Thus,
as the order of magnitude n of the remainder increases, the fit increases, too.
(You have already seen this illustrated with the sine function and its various
Taylor polynomials, in the figure on page 600.)

While the first version of Taylor’s theorem tells us that R(x) looks like A formula for
the remainder(x − a)n+1 in some general way, the next gives us a concrete formula. At

least, it looks concrete. Notice, however, that R(x) is expressed in terms of
a number cx (which depends upon x), but the formula doesn’t tell us how cx

depends upon x. Therefore, if you want to use the formula to compute the
value of R(x), you can’t. The theorem says only that cx exists; it doesn’t say
how to find its value. Nevertheless, this version provides useful information,
as you will see.

Taylor’s theorem, version 2. Suppose f has continuous
derivatives up to order n + 1 for all x in some interval contain-
ing a. Then, for each x in that interval, there is a number cx

between a and x for which

R(x) =
f (n+1)(cx)

(n + 1)!
(x − a)n+1.

This is called Lagrange’s form of the remainder.

We can use the Lagrange form as an aid to computation. To see how, Another formula for
the remainderreturn to the formula

R(x) ≈ C(x − a)n+1 (x ≈ a)

that expresses R(x) = O((x− a)n+1) as x → a (see page 608). The constant
here is the limit

C = lim
x→a

R(x)

(x − a)n+1
.
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If we have a good estimate for the value of C, then R(x) ≈ C(x − a)n+1

gives us a good way to estimate R(x). Of course, we could just evaluate the
limit to determine C. In fact, that’s what we did in the example; knowing
C ≈ .008 there gave us two more decimal places of accuracy in our polynomial
approxmation to the sine function.

But the Lagrange form of the remainder gives us another way to deter-Determining C
from f at x = a mine C:

C = lim
x→a

R(x)

(x − a)n+1
= lim

x→a

f (n+1)(cx)

(n + 1)!

=
f (n+1)(limx→a cx)

(n + 1)!

=
f (n+1)(a)

(n + 1)!
.

In this argument, we are permitted to take the limit “inside” f (n+1) because
f (n+1) is a continuous function. (That is one of the hypotheses of version 2.)
Finally, since cx lies between x and a, it follows that cx → a as x → a;
in other words, limx→a cx = a. Consequently, we get C directly from the
function f itself, and we can therefore write

R(x) ≈ f (n+1)(a)

(n + 1)!
(x − a)n+1 (x ≈ a).

The third version of Taylor’s theorem uses the Lagrange form of theAn error bound

remainder in a similar way to get an error bound for the polynomial approx-
imation based on the size of f (n+1)(x).

Taylor’s theorem, version 3. Suppose that |f (n+1)(x)| ≤ M
for all x in some interval containing a. Then, for each x in that
interval,

|R(x)| ≤ M

(n + 1)!
|x − a|n+1.

With this error bound, which is derived from knowledge of f(x) near x = a,
we can determine quite precisely how many decimal places of accuracy a
Taylor polynomial approximation achieves. The following example illustrates
the different versions of Taylor’s theorem.



DVI file created at 18:01,  25 January 2008
Copyright 1994, 2008 Five Colleges, Inc.

10.2. TAYLOR POLYNOMIALS 611

Example. Consider
√

x near x = 100. The second degree Taylor polynomial
for

√
x, centered at x = 100, is

Q(x) = 10 +
(x − 100)

20
− (x − 100)2

8000
.

x

y
y = √x

y = Q(x)

0 50 100 150 200

5

10

15

x

y

y = √x − Q(x)

95 100 105 110

−0.0005

0.0005

Plot y = Q(x) and y =
√

x together; the result should look like the figure on Version 1:
the remainder is
O((x − 100)3)

the left, above. Then plot the remainder y =
√

x−Q(x) near x = 100. This
graph should suggest that

√
x − Q(x) = O((x − 100)3) as x → 100. In fact,

this is what version 1 of Taylor’s theorem asserts. Furthermore,

lim
x→100

√
x − Q(x)

(x − 100)3
≈ 6.25 × 10−7;

check this yourself by constructing a table of values. Thus
√

x − Q(x) ≈ C(x − 100)3 where C ≈ 6.25 × 10−7.

We can use the Lagrange form of the remainder (in version 2 of Tay- Version 2:
determining C in terms

of
√

x at x = 100
lor’s theorem) to get the value of C another way—directly from the third
derivative of

√
x at x = 100:

C =
(x1/2)′′′

3!

∣
∣
∣
∣
x=100

=
1
2
· −1

2
· −3

2
· (100)−5/2

6
=

1

24 · 105
= 6.25 × 10−7.

This is the exact value, confirming the estimate obtained above.
Let’s see what the equation

√
x − Q(x) ≈ 6.25 × 10−7(x − 100)3 tells us Accuracy of

the polynomial
approximation

about the accuracy of the polynomial approximation. If we assume |x−100| <
.5 × 10−k, then

|
√

x − Q(x)| < 6.25 × 10−7 × (.5 × 10−k)3

= .78125 × 10−(3k+7) < .5 × 10−(3k+6).

Thus
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x = 100 to k decimal places =⇒ √
x = Q(x) to 3k + 6 places.

For example, if x = 100.47, then k = 0, so Q(100.47) =
√

100.47 to 6 decimal
places. We find

Q(100.47) = 10.0234723875,

and the underlined digits should be correct. In fact,

√
100.47 = 10.0234724521 . . . .

Here is a second example. If x = 102.98, then we can take k = −1, so
Q(102.98) =

√
102.98 to 3(−1) + 6 = 3 decimal places. We find

Q(102.98) = 10.14788995,
√

102.98 = 10.147906187 . . . .

Let’s see what additional light version 3 sheds on our investigation. Sup-Version 3:
an explicit
error bound

pose we assume x = 100 to k = 0 decimal places. This means that x lies
in the open interval (99.5, 100.5). Version 3 requires that we have a bound
on the size of the third derivative of f(x) =

√
x over this interval. Now

f ′′′(x) = 3
8
x−5/2, and this is a decreasing function. (Check its graph; alter-

natively, note that its derivative is negative.) Its maximum value therefore
occurs at the left endpoint of the (closed) interval [99.5, 100.5]:

|f ′′′(x)| ≤ f ′′′(99.5) = 3
8
(99.5)−5/2 < 3.8 × 10−6.

Therefore, from version 3 of Taylor’s theorem,

|
√

x − Q(x)| <
3.8 × 10−6

3!
|x − 100|3

Since |x − 100| < .5, |x − 100|3 < .125, so

|
√

x − Q(x)| <
3.8 × 10−6 × .125

6
= .791667 × 10−7 < .5 × 10−6.

This proves
√

x = Q(x) to 6 decimal places—confirming what we found
earlier.
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Applications

Evaluating Functions. An obvious use of Taylor polynomials is to evaluate Now you can do
anything your

calculator can!
functions. In fact, whenever you ask a calculator or computer to evaluate
a function—trigonometric, exponential, logarithmic—it is typically giving
you the value of an appropriate polynomial (though not necessarily a Taylor
polynomial).

Evaluating Integrals. The fundamental theorem of calculus gives us a
quick way of evaluating a definite integral provided we can find an antideriva-
tive for the function under the integral (cf. chapter 6.4). Unfortunately, many
common functions, like e−x2

or (sin x)/x, don’t have antiderivatives that can
be expressed as finite algebraic combinations of the basic functions. Up until
now, whenever we encountered such a function we had to rely on a Riemann
sum to estimate the integral. But now we have Taylor polynomials, and it’s
easy to find an antiderivative for a polynomial! Thus, if we have an awkward
definite integral to evaluate, it is reasonable to expect that we can estimate it
by first getting a good polynomial approximation to the integrand, and then
integrating this polynomial. As an example, consider the error function,
erf(t), defined by

The error functionerf(t) =
2√
π

∫ t

0

e−x2

dx .

This is perhaps the most important integral in statistics. It is the basis of
the so-called “normal distribution” and is widely used to decide how good
certain statistical estimates are. It is important to have a way of obtaining
fast, accurate approximations for erf(t). We have already seen that

e−x2 ≈ 1 − x2 +
x4

2!
− x6

3!
+

x8

4!
− · · · ± x2n

n!
.

Now, if we antidifferentiate term by term:

∫

e−x2

dx ≈
∫ (

1 − x2 +
x4

2!
− x6

3!
+

x8

4!
− · · · ± x2n

n!

)

dx

=

∫

1 dx −
∫

x2 dx +

∫
x4

2!
dx −

∫
x6

3!
dx + · · · ±

∫
x2n

n!
dx

= x − x3

3
+

x5

5 · 2!
− x7

7 · 3!
+ · · · ± x2n+1

(2n + 1) · n!
.
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Thus,
∫ t

0

e−x2

dx ≈ x − x3

3
+

x5

5 · 2!
− x7

7 · 3!
+ · · · ± x2n+1

(2n + 1) · n!

∣
∣
∣
∣

t

0

,

giving us, finally, an approximate formula for erf(t):

A formula for
approximating the
error function

erf(t) ≈ 2√
π

(

t − t3

3
+

t5

5 · 2!
− t7

·3!
+ · · · ± t2n+1

(2n + 1) · n!

)

.

Thus if we needed to know, say, erf(1), we could quickly approximate it. For
instance, letting n = 6, we have

erf(1) ≈ 2√
π

(

1 − 1

3
+

1

5 · 2!
− 1

7 · 3!
+

1

9 · 4!
− 1

11 · 5!
+

1

13 · 6!

)

≈ 2√
π

(

1 − 1

3
+

1

10
− 1

42
+

1

216
− 1

1320
+

1

9360

)

≈ .746836
2√
π
≈ .842714,

a value accurate to 4 decimals. If we had needed greater accuracy, we could
simply have taken a larger value for n. For instance, if we take n = 12, we get
the estimate .8427007929. . . , where all 10 decimals are accurate (i.e., they
don’t change as we take larger values n).

Evaluating Limits. Our final application of Taylor polynomials makes
explicit use of the order of magnitude of the remainder. Consider the problem
of evaluating a limit like

lim
x→0

1 − cos(x)

x2
.

Since both numerator and denominator approach 0 as x → 0, it isn’t clear
what the quotient is doing. If we replace cos(x) by its third degree Taylor
polynomial with remainder, though, we get

cos(x) = 1 − 1

2!
x2 + R(x),

and R(x) = O(x4) as x → 0. Consequently, if x 6= 0 but x → 0, then

1 − cos(x)

x2
=

1 −
(
1 − 1

2
x2 + R(x)

)

x2

=
1
2
x2 − R(x)

x2
=

1

2
− R(x)

x2
.
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Since R(x) = O(x4), we know that there is some constant C for which
R(x)/x4 → C as x → 0. Therefore,

lim
x→0

1 − cos(x)

x2
=

1

2
− lim

x→0

R(x)

x2
=

1

2
− lim

x→0

x2 · R(x)

x4

=
1

2
− lim

x→0
x2 · lim

x→0

R(x)

x4
=

1

2
− 0 · C =

1

2
.

There is a way to shorten these calculations—and to make them more Extending the
‘big oh’ notationtransparent—by extending the way we read the ‘big oh’ notation. Specifi-

cally, we will read O(q(x)) as “some (unspecified) function that is the same
order of magnitude as q(x)”.

Then, instead of writing cos(x) = 1− 1
2
x2+R(x), and then noting R(x) =

O(x4) as x → 0, we’ll just write

cos(x) = 1 − 1
2
x2 + O(x4) (x → 0).

In this spirit,

1 − cos(x)

x2
=

1 −
(
1 − 1

2
x2 + O(x4)

)

x2

=
1
2
x2 − O(x4)

x2
= 1

2
+ O(x2) (x → 0).

We have used the fact that ±O(x4)/x2 = O(x2). Finally, since O(x2) → 0
as x → 0 (do you see why?), the limit of the last expression is just 1/2 as
x → 0. Thus, once again we arrive at the result

lim
x→0

1 − cos(x)

x2
=

1

2
.

Exercises

1. Find a seventh degree Taylor polynomial centered at x = 0 for the indi-
cated antiderivatives.

a)

∫
sin(x)

x
dx.

[Answer:

∫
sin(x)

x
dx ≈ x − x3

3 · 3!
+

x5

5 · 5!
− x7

7 · 7!
.]
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b)

∫

ex2

dx.

c)

∫

sin(x2) dx.

2. Plot the 7-th degree polynomial you found in part (a) above over the
interval [0, 5]. Now plot the 9-th degree approximation on the same graph.
When do the two polynomials begin to differ visibly?

3. Using the seventh degree Taylor approximation

E(t) ≈
∫ t

0

e−x2

dx = t − t3

3
+

t5

5 · 2!
− t7

7 · 3!
,

calculate the values of E(.3) and E(−1). Give only the significant digits—
that is, report only those decimals of your estimates that you think are
fixed. (This means you will also need to calculate the ninth degree Taylor
polynomial as well—do you see why?)

4. Calculate the values of sin(.4) and sin(π/12) using the seventh degree
Taylor polynomial centered at x = 0

sin(x) ≈ x − x3

3!
+

x5

5!
− x7

7!
.

Compare your answers with what a calculator gives you.

5. Find the third degree Taylor polynomial for g(x) = x3 − 3x at x = 1.
Show that the Taylor polynomial is actually equal to g(x)—that is, the re-
mainder is 0. What does this imply about the fourth degree Taylor polyno-
mial for g at x = 1 ?

6. Find the seventh degree Taylor polynomial centered at x = π for
(a) sin(x); (b) cos(x); (c) sin(3x).

7. In this problem you will compare computations using Taylor polynomials
centered at x = π with computations using Taylor polynomials centered at
x = 0.

a) Calculate the value of sin(3) using a seventh degree Taylor polynomial
centered at x = 0. How many decimal places of your estimate appear to be
fixed?
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b) Now calculate the value of sin(3) using a seventh degree Taylor polyno-
mial centered at x = π. Now how many decimal places of your estimate
appear to be fixed?

8. Write a program which evaluates a Taylor polynomial to print out sin(5◦),
sin(10◦), sin(15◦), . . . , sin(40◦), sin(45◦) accurate to 7 decimals. (Remember
to convert to radians before evaluating the polynomial!)

9. Why 0! = 1. When you were first introduced to exponential notation
in expressions like 2n, n was restricted to being a positive integer, and 2n

was defined to be the product of 2 multiplied by itself n times. Before long,
though, you were working with expressions like 2−3 and 21/4. These new
expressions weren’t defined in terms of the original definition. For instance,
to calculate 2−3 you wouldn’t try to multiply 2 by itself −3 times—that
would be nonsense! Instead, 2−m is defined by looking at the key properties

of exponentiation for positive exponents, and extending the definition to
other exponents in a way that preserves these properties. In this case, there
are two such properties, one for adding exponents and one for multiplying
them:

Property A: 2m · 2n = 2m+n for all positive m and n,

Property M: (2m)n = 2mn for all positive m and n.

a) Show that to preserve property A we have to define 20 = 1.

b) Show that we then have to define 2−3 = 1/23 if we are to continue to
preserve property A.

c) Show why 21/4 must be 4
√

2.

d) In the same way, you should convince yourself that a basic property of
the factorial notation is that (n+1)! = (n+1) ·n! for any positive integer n.
Then show that to preserve this property, we have to define 0! = 1.

e) Show that there is no way to define (−1)! which preserves this property.

10. Use the general rule to derive the 5-th degree Taylor polynomial cen-
tered at x = 0 for the function

f(x) = (1 + x)
1

2 .

Use this approximation to estimate
√

1.1. How accurate is this?
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11. Use the general rule to derive the formula for the n-th degree Taylor
polynomial centered at x = 0 for the function

f(x) = (1 + x)c where c is a constant.

12. Use the result of the preceding problem to get the 6-th degree Taylor
polynomial centered at x = 0 for 1/ 3

√
1 + x2.

[Answer: 1 − 1

3
x2 +

2

9
x4 − 14

81
x6.]

13. Use the result of the preceding problem to approximate
∫ 1

0

1
3
√

1 + x2
dx.

14. Calculate the first 7 decimals of erf(.3). Be sure to show why you think
all 7 decimals are correct. What degree Taylor polynomial did you need to
produce these 7 decimals?

[Answer: erf(.3) = .3286267 . . . .]

15. a) Apply the general formula for calculating Taylor polynomials cen-
tered at x = 0 to the tangent function to get the 5-th degree approximation.

[Answer: tan(x) ≈ x + x3/3 + 2x5/15.]

b) Recall that tan(x) = sin(x)/ cos(x). Multiply the 5-th degree Taylor
polynomial for tan(x) from part a) by the 4-th degree Taylor polynomial for
cos(x) and show that you get the fifth degree polynomial for sin(x) (discard-
ing higher degree terms).

16. Show that the n-th degree Taylor polynomial centered at x = 0 for
1/(1 − x) is 1 + x + x2 + · · · + xn.

17. Note that ∫
1

1 − x
dx = − ln(1 − x).

Use this observation, together with the result of the previous problem, to get
the n-th degree Taylor polynomial centered at x = 0 for ln(1 − x).

18. a) Find a formula for the n-th degree Taylor polynomial centered at
x = 1 for ln(x).
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b) Compare your answer to part (a) with the Taylor polynomial centered
at x = 0 for ln(1 − x) you found in the previous problem. Are your results
consistent?

19. a) The first degree Taylor polynomial for ex at x = 0 is 1 + x. Plot the
remainder R1(x) = ex − (1 + x) over the interval −.1 ≤ x ≤ .1. How does
this graph demonstrate that R1(x) = O(x2) as x → 0?

b) There is a constant C2 for which R1(x) ≈ C2x
2 when x ≈ 0. Why?

Estimate the value of C2.

20. This concerns the second degree Taylor polynomial for ex at x = 0. Plot
the remainder R2(x) = ex − (1 + x + x2/2) over the interval −.1 ≤ x ≤ .1.
How does this graph demonstrate that R2(x) = O(x3) as x → 0?

a) There is a constant C3 for which R2(x) ≈ C3x
3 when x ≈ 0. Why?

Estimate the value of C3.

21. Let R3(x) = ex −P3(x), where P3(x) is the third degree Taylor polyno-
mial for ex at x = 0. Show R3(x) = O(x4) as x → 0.

22. At first glance, Taylor’s theorem says that

sin(x) = x − 1

6
x3 + O(x4) as x → 0.

However, graphs and calculations done in the text (pages 605–607) make it
clear that

sin(x) = x − 1

6
x3 + O(x5) as x → 0.

Explain this. Is Taylor’s theorem wrong here?

23. Using a suitable formula (that is, a Taylor polynomial with remainder)
for each of the functions involved, find the indicated limit.

a) lim
x→0

sin(x)

x
[Answer: 1]

b) lim
x→0

ex − (1 + x)

x2
[Answer: 1/2]

c) lim
x→1

ln x

x − 1

d) lim
x→0

x − sin(x)

x3
[Answer: 1/6]
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e) lim
x→0

sin(x2)

1 − cos(x)

24. Suppose f(x) = 1 + x2 + O(x4) as x → 0. Show that

(f(x))2 = 1 + 2x2 + O(x4) as x → 0.

25. a) Using sin x = x − 1
6
x3 + O(x5) as x → 0, show

(sin x)2 = x2 − 1
3
x4 + O(x6) as x → 0.

b) Using cos x = 1 − 1
2
x2 + 1

24
x4 + O(x5) as x → 0, show

(cos x)2 = 1 − x2 + 1
3
x4 + O(x5) as x → 0.

c) Using the previous parts, show (sin x)2 + (cos x)2 = 1 + O(x5) as x → 0.
(Of course, you already know (sin x)2 + (cos x)2 = 1 exactly.)

26. a) Apply the general formula for calculating Taylor polynomials to the
tangent function to get the 5-th degree approximation.

b) Recall that tan(x) = sin(x)/ cos(x), so tan(x) · cos(x) = sin(x). Multiply
the fifth degree Taylor polynomial for tan(x) from part a) by the fifth degree
Taylor polynomial for cos(x) and show that you get the fifth degree Taylor
polynomial for sin(x) plus O(x6)—that is, plus terms of order 6 and higher.

27. a) Using the formulas

eu = 1 + u + 1
2
u2 + 1

6
u3 + O(u4) (u → 0),

sin x = x − 1
6
x3 + O(x5) (x → 0),

show that esinx = 1 + x + 1
2
x2 + O(x4) as x → 0.

b) Apply the general formula to obtain the third degree Taylor polynomial
for esinx at x = 0, and compare your result with the formula in part (a).

28. Using
ex − 1

x
= 1 + 1

2
x + 1

6
x2 + 1

24
x3 + O(x4) as x → 0, show that

x

ex − 1
= 1 − 1

2
x + 1

12
x2 + O(x4) (x → 0).
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29. Show that the following are true as x → ∞.

a) x + 1/x = O(x).

b) 5x7 − 12x4 + 9 = O(x7).

c)
√

1 + x2 = O(x).

d)
√

1 + xp = O(xp/2).

30. a) Let f(x) = ln(x). Find the smallest bound M for which

|f (4)(x)| ≤ M when |x − 1| ≤ .5.

b) Let P3(x) be the degree 3 Taylor polynomial for ln(x) at x = 1, and let
R3(x) be the remainder R3(x) = ln(x) − P3(x). Find a number K for which

|R(x)| ≤ K |x − 1|4

for all x satisfying |x − 1| ≤ .5.

c) If you use P3(x) to approximate the value of ln(x) in the interval .5 ≤
x ≤ 1.5, how many digits of the approximation are correct?

d) Suppose we restrict the interval to |x−1| ≤ .1. Repeat parts (a) and (b),
getting smaller values for M and K. Now how many digits of the polynomial
approximation P3(x) to ln(x) are correct, if .9 ≤ x ≤ 1.1?

“Little oh” notation. Similar to the “big oh” notation is another, called
the “little oh”: if

lim
x→a

φ(x)

q(x)
= 0,

then we write φ(x) = o(q(x)) and say φ is ‘little oh’ of q as x → a.

31. Suppose φ(x) = O(x6) as x → 0. Show the following.

a) φ(x) = O(x5) as x → 0.

b) φ(x) = o(x5) as x → 0.

c) It is false that φ(x) = O(x7) as x → 0. (One way you can do this is to
give an explicit example of a function φ(x) for which φ(x) = O(x6) but for
which you can show φ(x) = O(x7) is false.)

d) It is false that φ(x) = o(x6) as x → 0.

32. Sketch the graph y = x ln(x) over the interval 0 < x ≤ 1. Explain why
your graph shows ln(x) = o(1/x) as x → 0.
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10.3 Taylor Series

In the previous section we have been talking about approximations to func-
tions by their Taylor polynomials. Thus, for instance, we were able to write
statements like

sin(x) ≈ x − x3

3!
+

x5

5!
− x7

7!
,

where the approximation was a good one for values of x not too far from
0. On the other hand, when we looked at Taylor polynomials of higher and
higher degree, the approximations were good for larger and larger values of
x. We are thus tempted to write

sin(x) = x − x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− · · · ,

indicating that the sine function is equal to this “infinite degree” polynomial.
This infinite sum is called the Taylor series centered at x = 0 for sin(x).
But what would we even mean by such an infinite sum? We will explore thisYou have seen

infinite sums before question in detail in section 5, but you should already have some intuition
about what it means, for it can be interpreted in exactly the same way we
interpret a more familiar statement like

1

3
= .33333 . . .

=
3

10
+

3

100
+

3

1000
+

3

10000
+

3

100000
+ · · · .

Every decimal number is a sum of fractions whose denominators are powers
of 10; 1/3 is a number whose decimal expansion happens to need an infinite
number of terms to be completely precise. Of course, when a practical matter
arises (for example, typing a number like 1/3 or π into a computer) just the
beginning of the sum is used—the “tail” is dropped. We might write 1/3 as
0.33, or as 0.33333, or however many terms we need to get the accuracy we
want. Put another way, we are saying that 1/3 is the limit of the finite sums
of the right hand side of the equation.

Our new formulas for Taylor series are meant to be used exactly the sameInfinite degree
polynomials are to be
viewed like infinite
decimals

way: when a computation is involved, take only the beginning of the sum,
and drop the tail. Just where you cut off the tail depends on the input
value x and on the level of accuracy needed. Look at what happens when
we we approximate the value of cos(π/3) by evaluating Taylor polynomials
of increasingly higher degree:
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1 = 1.0000000

1 − 1

2!

(π

3

)2
≈ 0.4516887

1 − 1

2!

(π

3

)2
+

1

4!

(π

3

)4
≈ 0.5017962

1 − 1

2!

(π

3

)2
+

1

4!

(π

3

)4
− 1

6!

(π

3

)6
≈ 0.4999646

1 − 1

2!

(π

3

)2
+

1

4!

(π

3

)4
− 1

6!

(π

3

)6
+

1

8!

(π

3

)8
≈ 0.5000004

1 − 1

2!

(π

3

)2
+

1

4!

(π

3

)4
− 1

6!

(π

3

)6
+

1

8!

(π

3

)8
− 1

10!

(π

3

)10
≈ 0.5000000

These sums were evaluated by setting π = 3.141593. As you can see,
at the level of precision we are using, a sum that is six terms long gives
the correct value. However, five, four, or even three terms may have been
adequate for the needs at hand. The crucial fact is that these are all honest
calculations using only the four operations of elementary arithmetic.

Note that if we had wanted to get the same 6 place accuracy for cos(x)
for a larger value of x, we might need to go further out in the series. For
instance cos(7π/3) is also equal to .5, but the tenth degree Taylor polynomial
centered at x = 0 gives

1 − 1

2!

(
7π

3

)2

+
1

4!

(
7π

3

)4

− 1

6!

(
7π

3

)6

+
1

8!

(
7π

3

)8

− 1

10!

(
7π

3

)10

= −37.7302,

which is not even close to .5 . In fact, to get cos(7π/3) to 6 decimals, we need
to use the Taylor polynomial centered at x = 0 of degree 30, while to get
cos(19π/3) (also equal to .5) to 6 decimals we need the Taylor polynomial
centered at x = 0 of degree 66!

The key fact, though, is that, for any value of x, if we go out in the series
far enough (where what constitutes “far enough” will depend on x), we can
approximate cos(x) to any number of decimal places desired. For any x, the
value of cos(x) is the limit of the finite sums of the Taylor series, just as 1/3
is the limit of the finite sums of its infinite series representation.

In general, given a function f(x), its Taylor series centered at x = 0 will
be

f(0) + f ′(0)x +
f (2)(0)

2!
x2 +

f (3)(0)

3!
x3 +

f (4)(0)

4!
x4 + · · · =

∞∑

k=0

f (k)(0)

k!
xk.
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We have the following Taylor series centered at x = 0 for some common
functions:

f(x) Taylor series for f(x)

sin(x) x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

cos(x) 1 − x2

2!
+

x4

4!
− x6

6!
+ · · ·

ex 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

ln (1 − x) −
(

x +
x2

2
+

x3

3
+

x4

4
+ · · ·

)

1

1 − x
1 + x + x2 + x3 + · · ·

1

1 + x2
1 − x2 + x4 − x6 + · · ·

(1 + x)c 1 + cx +
c(c − 1)

2!
x2 +

c(c − 1)(c − 2)

3!
x3 + · · ·

While it is true that cos(x) and ex equal their Taylor series, just as sin(x)
did, we have to be more careful with the last four functions. To see why
this is, let’s graph 1/(1 + x2) and its Taylor polynomials Pn(x) = 1 − x2 +
x4 − x6 + · · · ± xn for n = 2, 4, 6, 8, 10, 12, 14, 16, 200, and 202. Since all
the graphs are symmetric about the y-axis (why is this?), we draw only the
graphs for positive x:

n = 4
n = 8

n = 12
n = 16

n = 14
n = 10
n = 6
n = 2

n = 200

n = 202

1 2 3

1

x

y
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It appears that the graphs of the Taylor polynomials Pn(x) approach the A Taylor series
may not converge
for all values of x

graph of 1/(1 + x2) very nicely so long as x < 1. If x ≥ 1, though, it looks
like there is no convergence, no matter how far out in the Taylor series we
go. We can thus write

1

1 + x2
= 1 − x2 + x4 − x6 + · · · for |x| < 1,

where the restriction on x is essential if we want to use the = sign. We say
that the interval −1 < x < 1 is the interval of convergence for the Taylor
series centered at x = 0 for 1/(1 + x2). Some Taylor series, like those for
sin(x) and ex, converge for all values of x—their interval of convergence is
(−∞,∞). Other Taylor series, like those for 1/(1 + x2) and ln(1 − x), have
finite intervals of convergence.

Brook Taylor (1685–1731) was an English mathematician who developed the series that bears
his name in his book Methodus incrementorum (1715). He did not worry about questions of
convergence, but used the series freely to attack many kinds of problems, including differential
equations.

Remark On the one hand it is perhaps not too surprising that a function
should equal its Taylor series—after all, with more and more coefficients to
fiddle with, we can control more and more of the behavior of the associated
polynomials. On the other hand, we are saying that a function like sin(x) or
ex has its behavior for all values of x completely determined by the value of
the function and all its derivatives at a single point, so perhaps it is surprising
after all!

Exercises

1. a) Suppose you wanted to use the Taylor series centered at x = 0 to
calculate sin(100). How large does n have to be before the term (100)n/n! is
less than 1?

b) If we wanted to calculate sin(100) directly using this Taylor series, we
would have to go very far out before we began to approach a limit at all
closely. Can you use your knowledge of the way the circular functions behave
to calculate sin(100) much more rapidly (but still using the Taylor series
centered at x = 0)? Do it.



DVI file created at 18:01,  25 January 2008
Copyright 1994, 2008 Five Colleges, Inc.

626 CHAPTER 10. SERIES AND APPROXIMATIONS

c) Show that we can calculate the sine of any number by using a Taylor
series centered at x = 0 either for sin(x) or for cos(x) to a suitable value 0f
x between 0 and π/4.

2. a) Suppose we wanted to calculate ln 5 to 7 decimal places. An obvious
place to start is with the Taylor series centered at x = 0 for ln(1 − x):

−
(

x +
x2

2
+

x3

3
+

x4

4
+ · · ·

)

with x = −4. What happens when you do this, and why? Try a few more
values for x and see if you can make a conjecture about the interval of
convergence for this Taylor series.

[Answer: The Taylor series converges for −1 ≤ x < 1.]

b) Explain how you could use the fact that ln(1/A) = − ln A for any real
number A > 0 to evaluate ln x for x > 2. Use this to compute ln 5 to 7
decimals. How far out in the Taylor series did you have to go?

c) If you wanted to calculate ln 1.5, you could use the Taylor series for ln(1−
x) with either x = −1/2, which would lead directly to ln 1.5, or you could
use the series with x = 1/3, which would produce ln(2/3) = − ln 1.5 . Which
method is faster, and why?

3. We can improve the speed of our calculations of the logarithm function
slightly by the following series of observations:

a) Find the Taylor series centered at u = 0 for ln(1 + u).

[Answer: u − u2/2 + u3/3 − u4/4 + u5/5 + · · · ]
b) Find the Taylor series centered at u = 0 for

ln

(
1 − u

1 + u

)

.

(Remember that ln(A/B) = lnA − ln B.)

c) Show that any x > 0 can be written in the form (1− u)/(1 + u) for some
suitable −1 < u < 1.

d) Use the preceding to evaluate ln 5 to 7 decimal places. How far out in
the Taylor series did you have to go?

4. a) Evaluate arctan(.5) to 7 decimal places.
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b) Try to use the Taylor series centered at x = 0 to evaluate arctan(2)
directly—what happens? Remembering what the arctangent function means
geometrically, can you figure out a way around this difficulty?

5. a) Calculating π The Taylor series for the arctangent function,

arctanx = x − 1

3
x3 +

1

5
x5 − · · · ± 1

2n + 1
x2n+1 + · · · ,

lies behind many of the methods for getting lots of decimals of π rapidly. For
instance, since tan

(
π
4

)
= 1, we have π

4
= arctan 1. Use this to get a series

expansion for π. How far out in the series do you have to go to evaluate π
to 3 decimal places?

b) The reason the preceding approximations converged so slowly was that
we were substituting x = 1 into the series, so we didn’t get any help from the
xn terms in making the successive corrections get small rapidly. We would
like to be able to do something with values of x between 0 and 1. We can do
this by using the addition formula for the tangent function:

tan(α + β) =
tan α + tan β

1 − tan α tanβ
.

Use this to show that

π

4
= arctan

(
1

2

)

+ arctan

(
1

5

)

+ arctan

(
1

8

)

.

Now use the Taylor series for each of these three expressions to calculate π to
12 decimal places. How far out in the series do you have to go? Which series
did you have to go the farthest out in before the 12th decimal stabilized?
Why?

6. Raising e to imaginary powers One of the major mathematical de-
velopments of the last century was the extension of the ideas of calculus to
complex numbers—i.e., numbers of the form r+s i, where r and s are real
numbers, and i is a new symbol, defined by the property that i · i = −1 .
Thus i3 = i2 i = −i, i4 = i2 i2 = (−1)(−1) = 1, and so on. If we want to
extend our standard functions to these new numbers, we proceed as we did
in the previous section and look for the crucial properties of these functions
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to see what they suggest. One of the key properties of ex as we’ve now seen
is that it possesses a Taylor series:

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · .

But this property only involves operations of ordinary arithmetic, and so
makes perfectly good sense even if x is a complex number

a) Show that if s is any real number, we must define ei s to be cos(s)+i sin(s)
if we want to preserve this property.

b) Show that eπ i = −1.

c) Show that if r + s i is any complex number, we must have

er+s i = er(cos s + i sin s)

if we want complex exponentials to preserve all the right properties.

d) Find a complex number r + si such that er+s i = −5.

7. Hyperbolic trigonometric functions The hyperbolic trigonometric
functions are defined by the formulas

cosh(x) =
ex + e−x

2
, sinh(x) =

ex − e−x

2
.

(The names of these functions are usually pronounced “cosh” and “cinch.”) In
this problem you will explore some of the reasons for the adjectives hyperbolic

and trigonometric.

a) Modify the Taylor series centered at x = 0 for ex to find a Taylor series
for cosh(x). Compare your results to the Taylor series centered at x = 0 for
cos(x).

b) Now find the Taylor series centered at x = 0 for sinh(x). Compare your
results to the Taylor series centered at x = 0 for sin(x).

c) Parts (a) and (b) of this problem should begin to explain the trigono-

metric part of the story. What about the hyperbolic part? Recall that the
familiar trigonometric functions are called circular functions because, for
any t, the point (cos t, sin t) is on the unit circle with equation x2 + y2 = 1
(cf. chapter 7.2). Show that the point (cosh t, sinh t) lies on the hyperbola
with equation x2 − y2 = 1.
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8. Consider the Taylor series centered at x = 0 for (1 + x)c.

a) What does the series give if you let c = 2? Is this reasonable?

b) What do you get if you set c = 3?

c) Show that if you set c = n, where n is a positive integer, the Taylor series
will terminate. This yields a general formula—the binomial theorem—that
was discovered by the 12th century Persian poet and mathematician, Omar
Khayyam, and generalized by Newton to the form you have just obtained.
Write out the first three and the last three terms of this formula.

d) Use an appropriate substitution for x and a suitable value for c to derive
the Taylor series for 1/(1 − u). Does this agree with what we previously
obtained?

e) Suppose we want to calculate
√

17 . We might try letting x = 16 and
c = 1/2 and using the Taylor series for (1 + x)c. What happens when you
try this?

f) We can still use the series to help us, though, if we are a little clever and
write

√
17 =

√
16 + 1 =

√

16

(

1 +
1

16

)

=
√

16 ·
√

1 +
1

16
= 4 ·

√

1 +
1

16
.

Now apply the series using x = 1/16 to evaluate
√

17 to 7 decimal place
accuracy. How many terms does it take?

g) Use the same kind of trick to evaluate 3
√

30.

Evaluating Taylor series rapidly Suppose we wanted to plot the Taylor
polynomial of degree 11 associated with sin(x). For each value of x, then, we
would have to evaluate

P11(x) = x − x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− x11

11!
.

Since the length of time it takes the computer to evaluate an expression
like this is roughly proportional to the number of multiplications and divi-
sions involved (additions and subtractions, by comparison, take a negligible
amount of time), let’s see how many of these operations are needed to eval-
uate P11(x). To calculate x11 requires 10 multiplications, while 11! requires
9 (if we are clever and don’t bother to multiply by 1 at the end!), so the
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evaluation of the term x11/11! will require a total of 20 operations (counting
the final division). Similarly, evaluating x9/9! requires 16 operations, x7/7!
requires 12, on down to x3/3!, which requires 4. Thus the total number of
multiplications and divisions needed is

4 + 8 + 12 + 16 + 20 = 60.

This is not too bad, although if we were doing this for many different values
of x, which would be the case if we wanted to graph P11(x), this would begin
to add up. Suppose, though, that we wanted to graph something like P51(x)
or P101(x). By the same analysis, evaluating P51(x) for a single value of x
would require

4 + 8 + 12 + 16 + 20 + 24 + · · ·+ 96 + 100 = 1300

multiplications and divisions, while evaluation of P101(x) would require 5100
operations. Thus it would take roughly 20 times as long to evaluate P51(x)
as it takes to evaluate P11(x), while P101(x) would take about 85 times as
long.

9. Show that, in general, the number of multiplications and divisions needed
to evaluate Pn(x) is roughly n2/2.

We can be clever, though. Note that P11(x) can be written as

x

(

1 − x2

2 · 3

(

1 − x2

4 · 5

(

1 − x2

6 · 7

(

1 − x2

8 · 9

(

1 − x2

10 · 11

)))))

.

10. How many multiplications and divisions are required to evaluate this
expression?

[Answer: 3 + 4 + 4 + 4 + 4 + 1 = 20.]

11. Thus this way of evaluating P11(x) is roughly three times as fast, a
modest saving. How much faster is it if we use this method to evaluate
P51(x)?

[Answer: The old way takes roughly 13 times as long.]

12. Find a general formula for the number of multiplications and divisions
needed to evaluate Pn(x) using this way of grouping.
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Finally, we can extend these ideas to reduce the number of operations
even further, so that evaluating a polynomial of degree n requires only n
multiplications, as follows. Suppose we start with a polynomial

p(x) = a0 + a1 x + a2 x2 + a3 x3 + · · ·+ an−1 xn−1 + an xn.

We can rewrite this as

a0 + x (a1 + x (a2 + . . . + x (an−2 + x (an−1 + an x)) . . .)) .

You should check that with this representation it requires only n multiplica-
tions to evaluate p(x) for a given x.

13. a) Write two computer programs to evaluate the 300th degree Taylor
polynomial centered at x = 0 for ex, with one of the programs being the
obvious, standard way, and the second program being this method given
above. Evaluate e1 = e using each program, and compare the length of time
required.

b) Use these two programs to graph the 300th degree Taylor polynomial for
ex over the interval [0, 2], and compare times.
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10.4 Power Series and Differential Equations

So far, we have begun with functions we already know, in the sense of being
able to calculate the value of the function and all its derivatives at at least
one point. This in turn allowed us to write down the corresponding Taylor
series. Often, though, we don’t even have this much information about a
function. In such cases it is frequently useful to assume that there is some
infinite polynomial—called a power series—which represents the function,
and then see if we can determine the coefficients of the polynomial.

This technique is especially useful in dealing with differential equations.
To see why this is the case, think of the alternatives. If we can approximate
the solution y = y(x) to a certain differential equation to an acceptable degree
of accuracy by, say, a 20-th degree polynomial, then the only storage space
required is the insignificant space taken to keep track of the 21 coefficients.
Whenever we want the value of the solution for a given value of x, we can
then get a quick approximation by evaluating the polynomial at x. Other
alternatives are much more costly in time or in space. We could use Euler’s
method to grind out the solution at x, but, as you’ve already discovered,
this can be a slow and tedious process. Another option is to calculate lots
of values and store them in a table in the computer’s memory. This not
only takes up a lot of memory space, but it also only gives values for a
finite set of values of x, and is not much faster than evaluating a polynomial.
Until 30 years ago, the table approach was the standard one—all scientists
and mathematicians had a handbook of mathematical functions containing
hundreds of pages of numbers giving the values of every function they might
need.

To see how this can happen, let’s first look at a familiar differential equa-
tion whose solutions we already know:

y′ = y.

Of course, we know by now that the solutions are y = aex for an arbitrary
constant a (where a = y(0)). Suppose, though, that we didn’t already know
how to solve this differential equation. We might see if we can find a power
series of the form

y = a0 + a1 x + a2 x2 + a3 x3 + · · ·+ an xn + · · ·
that solves the differential equation. Can we, in fact, determine values for
the coefficients a0, a1, a2, · · · , an, · · · that will make y′ = y?
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Using the rules for differentiation, we have

y′ = a1 + 2a2 x + 3a3 x2 + 4a4 x3 + · · ·+ nan xn−1 + · · · .

Two polynomials are equal if and only if the coefficients of corresponding
powers of x are equal. Therefore, if y′ = y , it would have to be true that

a1 = a0

2a2 = a1

3a3 = a2
...

nan = an−1
...

Therefore the values of a1, a2, a3, . . . are not arbitrary; indeed, each is de-
termined by the preceding one. Equations like these—which deal with a se-
quence of quantities and relate each term to those earlier in the sequence—are
called recursion relations. These recursion relations permit us to express
every an in terms of a0:

a1 = a0

a2 =
1

2
a1 =

1

2
a0

a3 =
1

3
a2 =

1

3
· 1

2
a0 =

1

3!
a0

a4 =
1

4
a3 =

1

4
· 1

3!
a0 =

1

4!
a0

...
...

...

an =
1

n
an−1 =

1

n
· 1

(n − 1)!
a0 =

1

n!
a0

...
...

...

Notice that a0 remains “free”: there is no equation that determines its value.
Thus, without additional information, a0 is arbitrary. The series for y now
becomes

y = a0 + a0 x +
1

2!
a0 x2 +

1

3!
a0 x3 + · · ·+ 1

n!
a0 xn + · · ·

or

y = a0

[

1 + x +
1

2!
x2 +

1

3!
x3 + · · ·+ 1

n!
x2 + · · ·

]

.
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But the series in square brackets is just the Taylor series for ex —we have
derived the Taylor series from the differential equation alone, without using
any of the other properties of the exponential function. Thus, we again find
that the solutions of the differential equation y′ = y are

y = a0e
x,

where a0 is an arbitrary constant. Notice that y(0) = a0, so the value of a0

will be determined if the initial value of y is specified.
Note In general, once we have derived a power series expression for a func-
tion, that power series will also be the Taylor series for that function. Al-
though the two series are the same, the term Taylor series is typically reserved
for those settings where we were able to evaluate the derivatives through some
other means, as in the preceding section.

Bessel’s Equation

For a new example, let’s look at a differential equation that arises in an
enormous variety of physical problems (wave motion, optics, the conduction
of electricity and of heat and fluids, and the stability of columns, to name a
few):

x2 · y′′ + x · y′ + (x2 − p2) · y = 0 .

This is called the Bessel equation of order p. Here p is a parameter
specified in advance, so we will really have a different set of solutions for each
value of p. To determine a solution completely, we will also need to specify
the initial values of y(0) and y′(0). The solutions of the Bessel equation of
order p are called Bessel functions of order p, and the solution for a given
value of p (together with particular initial conditions which needn’t concern
us here) is written Jp(x). In general, there is no formula for a Bessel function
in terms of simpler functions (although it turns out that a few special cases
like J1/2(x), J3/2(x), . . . can be expressed relatively simply). To evaluate such
a function we could use Euler’s method, or we could try to find a power series
solution.

Friedrich Wilhelm Bessel (1784–1846) was a German astronomer who studied the functions that
now bear his name in his efforts to analyze the perturbations of planetary motions, particularly
those of Saturn.

Consider the Bessel equation with p = 0. We are thus trying to solve the
differential equation

x2 · y′′ + x · y′ + x2 · y = 0.
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By dividing by x, we can simplify this a bit to

x · y′′ + y′ + x · y = 0.

Let’s look for a power series expansion

y = b0 + b1 x + b2 x2 + b3 x3 + · · · .

We have

y′ = b1 + 2b2x + 3b3x
2 + 4b4x

3 + · · ·+ (n + 1)bn+1x
n + · · ·

and

y′′ = 2b2 + 6b3x + 12b4x
2 + 20b5x

3 + · · · + (n + 2)(n + 1)bn+2x
n + · · · ,

We can now use these expressions to calculate the series for the combination
that occurs in the differential equation:

xy′′ = 2b2 x + 6b3 x2 + · · ·
y′ = b1 + 2b2 x + 3b3 x2 + · · ·
xy = b0 x + b1 x2 + · · ·

xy′′ + y′ + xy = b1 + (4b2 + b0)x + (9b3 + b1)x
2 + · · ·

In general, the coefficient of xn in the combination will be Finding the
coefficient of xn

(n + 1)n bn+1 + (n + 1) bn+1 + bn−1 = (n + 1)2 bn+1 + bn−1.

If the power series y is to be a solution to the original differential equation,
the infinite series for xy′′ + y′ + xy must equal 0. This in turn means that
every coefficient of that series must be 0. We thus get

b1 = 0,

4b2 + b0 = 0,

9b3 + b1 = 0,
...

n2bn + bn−2 = 0.
...

If we now solve these recursively as before, we see first off that since b1 = 0,
it must also be true that

bk = 0 for every odd k.



DVI file created at 18:01,  25 January 2008
Copyright 1994, 2008 Five Colleges, Inc.

636 CHAPTER 10. SERIES AND APPROXIMATIONS

For the even coefficients we have

b2 = − 1

22
b0,

b4 = − 1

42
b2 =

1

2242
b0,

b6 = − 1

62
b4 = − 1

224262
b0,

and, in general,

b2n = ± 1

224262 · · · (2n)2
b0 = ± 1

22n(n!)2
b0.

Thus any function y satisfying the Bessel equation of order 0 must be of
the form

y = b0

(

1 − x2

22
+

x4

24(2!)2
− x6

26(3!)2
+ · · ·

)

.

In particular, if we impose the initial condition y(0) = 1 (which requires that
b0 = 1), we get the 0-th order Bessel function J0(x):

J0(x) = 1 − x2

4
+

x4

64
− x6

2304
+

x8

147456
+ · · · .

Here is the graph of J0(x) together with the polynomial approximations ofThe graph of the
Bessel function J0 degree 2, 4, 6, . . . , 30 over the interval [0, 14]:

n = 4 n = 8 n = 12 n = 16 n = 20 n = 24 n = 28

n = 2 n = 6 n = 10 n = 14 n = 18 n = 22 n = 26 n = 30

x

y

y = J0(x)



DVI file created at 18:01,  25 January 2008
Copyright 1994, 2008 Five Colleges, Inc.

10.4. POWER SERIES AND DIFFERENTIAL EQUATIONS 637

The graph of J0 is suggestive: it appears to be oscillatory, with de-
creasing amplitude. Both observations are correct: it can in fact be shown
that J0 has infinitely many zeroes, spaced roughly π units apart, and that
limx→∞ J0(x) = 0.

The S-I-R Model One More Time

In exactly the same way, we can find power series solutions when there are
several interacting variables involved. Let’s look at the example we’ve con-
sidered at a number of points in this text to see how this works. In the S-I-R The S-I-R model

model we basically wanted to solve the system of equations

S ′ = −aSI,

I ′ = aSI − bI,

R′ = bI,

where a and b were parameters depending on the specific situation. Let’s
look for solutions of the form

S = s0 + s1 t + s2 t2 + s3 t3 + · · · ,

I = i0 + i1 t + i2 t2 + i3 t3 + · · · ,

R = r0 + r1 t + r2 t2 + r3 t3 + · · · .

If we put these series in the equation S ′ = −a S I, we get

s1 + 2s2t + 3s3t
2 + · · · = −a(s0 + s1t + s2t

2 + · · · )(i0 + i1t + i2t
2 + · · · )

= −a(s0i0 + (s0i1 + s1i0)t + (s0i2 + s1i1 + s2i0)t
2 + · · · ).

As before, if the two sides of the differential equation are to be equal, the Finding the coefficients
of the power series

for S(t)
coefficients of corresponding powers of t must be equal:

s1 = −as0i0,

2s2 = −a(s0i1 + s1i0),

3s3 = −a(s0i2 + s1i1 + s2i0),
...

nsn = −a(s0in−1 + s1in−2 + . . . + sn−2i1 + sn−1i0)
...
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While this looks messy, it has the crucial recursive feature—each sk is ex-
pressed in terms of previous terms. That is, if we knew all the s and the iRecursion again

coefficients out through the coefficients of, say, t6 in the series for S and I,
we could immediately calculate s7. We again have a recursion relation.

We could expand the equation I ′ = aSI − bI in the same way, and getFinding the
power series
for I(t)

recursion relations for the coefficients ik. In this model, though, there is a
shortcut if we observe that since S ′ = −aSI, and since I ′ = aSI − bI, we
have I ′ = −S ′ − bI. If we substitute the power series in this expression and
equate coefficients, we get

nin = −nsn − bin−1,

which leads to

in = −sn − b

n
in−1

—so if we know sn and in−1, we can calculate in.
We are now in a position to calculate the coefficients as far out as we

like. For we will be given values for a and b when we are given the model.
Moreover, since s0 = S(0) = the initial S-population, and i0 = I(0) = the
initial I-population, we will also typically be given these values as well. But
knowing s0 and i0, we can determine s1 and then i1. But then, knowing these
values, we can determine s2 and then i2, and so on. Since the arithmetic is
tedious, this is obviously a place for a computer. Here is a program that
calculates the first 50 coefficients in the power series for S(t) and I(t):

Program: SIRSERIES

DIM S(0 to 50), I(0 to 50)

a = .00001

b = 1/14

S(0) = 45400

I(0) = 2100

FOR k = 1 TO 50

Sum = 0

FOR j = 0 TO k - 1

Sum = Sum + S(j) * I(k - j - 1)

NEXT j

S(k) = -a * SUM/k

I(k) = -S(k) - b * I(k - 1)/k

NEXT k
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Comment: The opening command in this program introduces a new feature.
It notifies the computer that the variables S and I are going to be arrays—
strings of numbers—and that each array will consist of 51 elements. The
element S(k) corresponds to what we have been calling sk. The integer k is
called the index of the term in the array. The indices in this program run
from 0 to 50.

The effect of running this program is thus to create two 51-element arrays,
S and I, containing the coefficients of the power series for S and I out to
degree 50. If we just wanted to see these coefficients, we could have the
computer list them. Here are the first 35 coefficients for S (read across the
rows):

45400 −953.4 −172.3611 −17.982061 −.86969127
5.4479852e-2 1.5212707e-2 1.4463108e-3 4.3532884e-5 −7.9100481e-6

−1.4207959e-6 −1.0846994e-7 −6.512610e-10 9.304633e-10 1.256507e-10
7.443310e-12 −2.191966e-13 −9.787285e-14 −1.053428e-14 −4.382620e-16
4.230290e-17 9.548369e-18 8.321674e-19 1.760392e-20 −5.533369e-21

−8.770972e-22 −6.101928e-23 3.678170e-25 6.193375e-25 7.627253e-26
4.011923e-27 −1.986216e-28 −6.318305e-29 −6.271724e-30 −2.150100e-31

Thus the power series for S begins

45400−953.4t−172.3611t2−17.982061t3−.86969127t4+ · · ·−2.15010×10−31t34+· · ·

In the same fashion, we find that the power series for I begins

2100+803.4t+143.66824t2+14.561389t3+.60966648t4+· · ·+2.021195×10−31t34+· · ·

If we now wanted to graph these polynomials over, say, 0 ≤ t ≤ 10, Extending SIRSERIES
to graph S and Iwe can do it by adding the following lines to SIRSERIES. We first define a

couple of short subroutines SUS and INF to calculate the polynomial approxi-
mations for S(t) and I(t) using the coefficients we’ve derived in the first part
of the program. (Note that these subroutines calculate polynomials in the
straightforward, inefficient way. If you did the exercises in section 3 which
developed techniques for evaluating polynomials rapidly, you might want to
modify these subroutines to take advantage of the increased speed available.)
Remember, too, that you will need to set up the graphics at the beginning
of the program to be able to plot.
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Extension to SIRSERIES

DEF SUS(x)

Sum = S(0)

FOR j = 1 TO 50

Sum = Sum + S(j) * x^j

NEXT j

SUS = Sum

END DEF

DEF INF(x)

Sum = I(0)

FOR j = 1 TO 50

Sum = Sum + I(j) * x^j

NEXT j

INF = Sum

END DEF

FOR x = 0 TO 10 STEP .01

Plot the line from (x, SUS(x)) to (x + .01, SUS(x + .01))

Plot the line from (x, INF(x)) to (x + .01, INF(x + .01))

NEXT x

Here is the graph of I(t) over a 25-day period, together with the polyno-
mial approximations of degree 5, 20, 30, and 70.
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n = 30

t

I

I = I(x)

Note that these polynomials appear to converge to I(t) only out to values
of t around 10. If we needed polynomial approximations beyond that point,
we could shift to a different point on the curve, find the values of I and S
there by Euler’s method, then repeat the above process. For instance, when
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t = 12, we get by Euler’s method that S(12) = 7670 and I(12) = 27, 136 . If
we now shift our clock to measure time in terms of τ = t − 12, we get the
following polynomial of degree 30:

27136+143.0455τ−282.0180τ 2+23.5594τ 3+.4548τ 4+· · ·+1.2795×10−25τ 30

Here is what the graph of this polynomial looks like when plotted with
the graph of I. On the horizontal axis we list the t-coordinates with the
corresponding τ -coordinates underneath.

5 10 15 20 25

5000

10000

15000

20000

25000

30000

35000

40000

(τ = −7) (τ = −2) (τ = 3) (τ = 8) (τ = 13)
t

I

I = I(x)

The interval of convergence seems to be approximately 4 < t < 20. Thus
if we combine this polynomial with the 30-th degree polynomial from the
previous graph, we would have very accurate approximations for I over the
entire interval [0, 20].

Exercises

1. Find power series solutions of the form

y = a0 + a1x + a2x
2 + a3x

3 + · · · + anx
n + · · ·

for each of the following differential equations.

a) y′ = 2xy.

b) y′ = 3x2y.

c) y′′ + xy = 0.

d) y′′ + xy′ + y = 0.
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2. a) Find power series solutions to the differential equation y′′ = −y. Start
with

y = a0 + a1x + a2x
2 + a3x

3 + · · · + anxn + · · · .

Notice that, in the recursion relations you obtain, the coefficients of the even
terms are completely independent of the coefficients of the odd terms. This
means you can get two separate power series, one with only even powers,
with a0 as arbitrary constant, and one with only odd powers, with a1 as
arbitrary constant.

b) The two power series you obtained in part a) are the Taylor series centered
at x = 0 of two familiar functions; which ones? Verify that these functions
do indeed satisfy the differential equation y′′ = −y.

3. a) Find power series solutions to the differential equation y′′ = y. As in
the previous problem, the coefficients of the even terms depend only on a0,
and the coefficients of the odd terms depend only on a1. Write down the two
series, one with only even powers and a0 as an arbitrary constant, and one
with only odd powers, with a1 as an arbitrary constant.

b) The two power series you obtained in part a) are the Taylor series cen-
tered at x = 0 of two hyperbolic trigonometric functions (see the exercises
in section 3). Verify that these functions do indeed satisfy the differential
equation y′′ = y.

4. a) Find power series solutions to the differential equation y′ = xy, start-
ing with

y = a0 + a1x + a2x
2 + a3x

3 + · · · + anxn + · · · .

What recursion relations do you get? Is a1 = a3 = a5 = · · · = 0?

b) Verify that

y = ex2/2

satisfies the differential equation y′ = xy. Find the Taylor series for this
function and compare it with the series you obtained in a) using the recursion
relations.

5. The Bessel Equation.

a) Take p = 1 . The solution satisfying the initial condition y′ = 1/2 when
x = 0 is defined to be the first order Bessel function J1(x). (It will turn out
that y has to be 0 when x = 0, so we don’t have to specify the initial value
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of y; we have no choice in the matter.) Find the first five terms of the power
series expansion for J1(x). What is the coefficient of x2n+1?

b) Show by direct calculation from the series for J0 and J1 that

J ′
0 = −J1.

c) To see, from another point of view, that J ′
0 = −J1, take the equation

x · J ′′
0 + J ′

0 + x · J0 = 0

and differentiate it. By doing some judicious cancelling and rearranging of
terms, show that

x2 · (J ′
0)

′′ + x · (J ′
0)

′ + (x2 − 1)(J ′
0) = 0.

This demonstrates that J ′
0 is a solution of the Bessel equation with p = 1.

6. a) When we found the power series expansion for solutions to the 0-th
order Bessel equation, we found that all the odd coefficients had to be 0.
In particular, since b1 is the value of y′ when x = 0, we are saying that all
solutions have to be flat at x = 0. This should bother you a bit. Why can’t
you have a solution, say, that satisfies y = 1 and y′ = 1 when x = 0?

b) You might get more insight on what’s happening by using Euler’s method,
starting just a little to the right of the origin and moving left. Use Euler’s
method to sketch solutions with the initial values

i. y = 2 y′ = 1 when x = 1,
ii. y = 1.1 y′ = 1 when x = .1,
iii. y = 1.01 y′ = 1 when x = .01.

What seems to happen as you approach the y-axis?

7. Legendre’s differential equation

(1 − x2)y′′ − 2xy′ + ℓ(ℓ + 1)y = 0

arises in many physical problems—for example, in quantum mechanics, where
its solutions are used to describe certain orbits of the electron in a hydrogen
atom. In that context, the parameter ℓ is called the angular momentum of
the electron; it must be either an integer or a “half-integer” (i.e., a number
like 3/2). Quantum theory gets its name from the fact that numbers like the
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angular momentum of the electron in the hydrogen atom are “quantized”,
that is, they cannot have just any value, but must be a multiple of some
“quantum”—in this case, the number 1/2.

a) Find power series solutions of Legendre’s equation.

b) Quantization of angular momentum has an important consequence. Specif-
ically, when ℓ is an integer it is possible for a series solution to stop—that
is, to be a polynomial. For example, when ℓ = 1 and a0 = 0 the series solu-
tion is just y = a1x—all higher order coefficients turn out to be zero. Find
polynomial solutions to Legendre’s equation for ℓ = 0, 2, 3, 4, and 5 (consider
a0 = 0 or a1 = 0). These solutions are called, naturally enough, Legendre

polynomials.

8. It turns out that the power series solutions to the S-I-R model have
a finite interval of convergence. By plotting the power series solutions of
different degrees against the solutions obtained by Euler’s method, estimate
the interval of convergence.

9. a) Logistic Growth Find the first five terms of the power series solution
to the differential equation

y′ = y(1 − y).

Note that this is just the logistic equation, where we have chosen our units
of time and of quantities of the species being studied so that the carrying
capacity is 1 and the intrinsic growth rate is 1.

b) Using the initial condition y = .1 when x = 0, plot this power series
solution on the same graph as the solution obtained by Euler’s method. How
do they compare?

c) Do the same thing with initial conditions y = 2 when x = 0.
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10.5 Convergence

We have written expressions such as

sin(x) = x − x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− · · · ,

meaning that for any value of x the series on the right will converge to sin(x).
There are a couple of issues here. The first is, what do we even mean when
we say the series “converges”, and how do we prove it converges to sin(x)?
If x is small, we can convince ourselves that the statement is true just by
trying it. If x is large, though, say x = 100100, it would be convenient to have
a more general method for proving the stated convergence. Further, we have
the example of the function 1/(1 + x2) as a caution—it seemed to converge
for small values of x (|x| < 1), but not for large values.

Let’s first clarify what we mean by convergence. It is, essentially, the Convergence means
essentially that

“decimals stabilize”
intuitive notion of “decimals stabilizing” that we have been using all along.
To make explicit what we’ve been doing, let’s write a “generic” series

b0 + b1 + b2 + · · · =

∞∑

m=0

bm.

When we evaluated such a series, we looked at the partial sums

S1 = b0 + b1 =

1∑

m=0

bm,

S2 = b0 + b1 + b2 =
2∑

m=0

bm,

S3 = b0 + b1 + b2 + b3 =

3∑

m=0

bm,

...
...

Sn = b0 + b1 + b2 + . . . + bn =
n∑

m=0

bm,

...
...

Typically, when we calculated a number of these partial sums, we noticed
that beyond a certain point they all seemed to agree on, say, the first 8
decimal places. If we kept on going, the partial sums would agree on the first
9 decimals, and, further on, on the first 10 decimals, etc. This is precisely
what we mean by convergence:
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The infinite series

b0 + b1 + b2 + · · · =
∞∑

m=0

bm

converges if, no matter how many decimal places are specified, it is
always the case that the partial sums eventually agree to at least this
many decimal places.

Put more formally, we say the series converges if, given any number
D of decimal places, it is always possible to find an integer ND such
that if k and n are both greater than ND, then Sk and Sn agree to at
least D decimal places.

The number defined by these stabilizing decimals is called the sum

of the series.

If a series does not converge, we say it diverges.

In other words, for me to prove to you that the Taylor series for sin(x)What it means for
an infinite sum
to converge

converges at x = 100100, you would specify a certain number of decimal
places, say 5000, and I would have to be able to prove to you that if you
took partial sums with enough terms, they would all agree to at least 5000
decimals. Moreover, I would have to be able to show the same thing happens
if you specify any number of decimal places you want agreement on.

How can this be done? It seems like an enormously daunting task to be
able to do for any series. We’ll tackle this challenge in stages. First we’ll
see what goes wrong with some series that don’t converge—divergent series.
Then we’ll look at a particular convergent series—the geometric series—
that’s relatively easy to analyze. Finally, we will look at some more general
rules that will guarantee convergence of series like those for the sine, cosine,
and exponential functions.

Divergent Series

Suppose we have an infinite series

b0 + b1 + b2 + · · · =

∞∑

m=0

bm,
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and consider two successive partial sums, say

S122 = b0 + b1 + b2 + . . . + b122 =

122∑

m=0

bm

and

S123 = b0 + b1 + b2 + . . . + b122 + b123 =
123∑

m=0

bm.

Note that these two sums are the same, except that the sum for S123 has
one more term, b123, added on. Now suppose that S122 and S123 agree to 19
decimal places. In section 2 we defined this to mean |S123−S122| < .5×10−19.
But since S123 − S122 = b123, this means that |b123| < .5 × 10−19. To phrase
this more generally,

Two successive partial sums, Sn and Sn+1, agree out
to k decimal places if and only if |bn+1| < .5 × 10−k.

But since our definition of convergence required that we be able to fix any
specified number of decimals provided we took partial sums lengthy enough,
it must be true that if the series converges, the individual terms bk must A necessary condition

for convergencebecome arbitrarily small if we go out far enough. Intuitively, you can think
of the partial sums Sk as being a series of approximations to some quantity.
The term bk+1 can be thought of as the “correction” which is added to Sk

to produce the next approximation Sk+1. Clearly, if the approximations are
eventually becoming good ones, the corrections made should become smaller
and smaller. We thus have the following necessary condition for convergence:

If the infinite series b0 + b1 + b2 + · · · =

∞∑

m=0

bm converges,

then lim
k→∞

bk = 0.

Remark: It is important to recognize what this criterion does and does
not say—it is a necessary condition for convergence (i.e., every convergent Necessary and

sufficient mean
different things

sequence has to satisfy the condition limk→∞ bk = 0)—but it is not a suf-

ficient condition for convergence (i.e., there are some divergent sequences
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that also have the property that limk→∞ bk = 0). The criterion is usually
used to detect some divergent series, and is more useful in the following form
(which you should convince yourself is equivalent to the preceding):

If lim
k→∞

bk 6= 0, (either because the limit doesn’t exist at all,

or it equals something besides 0), then the infinite series

b0 + b1 + b2 + · · · =
∞∑

m=0

bm diverges.

This criterion allows us to detect a number of divergent series right away.Detecting
divergent series For instance, we saw earlier that the statement

1

1 + x2
= 1 − x2 + x4 − x6 + · · ·

appeared to be true only for |x| < 1. Using the remarks above, we can see
why this series has to diverge for |x| ≥ 1. If we write 1 − x2 + x4 − x6 + · · ·
as b0 + b1 + b2 + · · · , we see that bk = (−1)kx2k. Clearly bk does not go to
0 for |x| ≥ 1—the successive “corrections” we make to each partial sum just
become larger and larger, and the partial sums will alternate more and more
wildly from a huge positive number to a huge negative number. Hence the
series converges at most for −1 < x < 1. We will see in the next subsection
how to prove that it really does converge for all x in this interval.

Using exactly the same kind of argument, we can show that the following
series also diverge for |x| > 1:

f(x) Taylor series for f(x)

ln (1 − x) −
(

x +
x2

2
+

x3

3
+

x4

4
+ · · ·

)

1

1 − x
1 + x + x2 + x3 + · · ·

(1 + x)c 1 + cx +
c(c − 1)

2!
x2 +

c(c − 1)(c − 2)

3!
x3 + · · ·

arctan x x − x3

3
+

x5

5
− · · · ± x2n+1

2n + 1
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The details are left to the exercises. While these common series all happen
to diverge for |x| > 1, it is easy to find other series that diverge for |x| > 2
or |x| > 17 or whatever—see the exercises for some examples.

The Harmonic Series

We stated earlier in this section that simply knowing that the individual
terms bk go to 0 for large values of k does not guarantee that the series

b0 + b1 + b2 + · · ·
will converge. Essentially what can happen is that the bk go to 0 slowly An important

counterexampleenough that they can still accumulate large values. The classic example of
such a series is the harmonic series:

1 +
1

2
+

1

3
+

1

4
+ · · · =

∞∑

i=1

1

i
.

It turns out that this series just keeps getting larger as you add more terms.
It is eventually larger than 1000, or 1 million, or 100100 or . . . . This fact is
established in the exercises. A suggestive argument, though, can be quickly
given by observing that the harmonic series is just what you would get if you
substituted x = 1 into the power series

x +
x2

2
+

x3

3
+

x4

4
+ · · · .

But this is just the Taylor series for − ln(1 − x), and if we substitute x = 1
into this we get − ln 0, which isn’t defined. Also, limx→0 − ln x = +∞.

The Geometric Series

A series occurring frequently in a wide range of contexts is the geometric

series

G(x) = 1 + x + x2 + x3 + x4 + · · · ,

This is also a sequence we can analyze completely and rigorously in terms of
its convergence. It will turn out that we can then reduce the analysis of the
convergence of several other sequences to the behavior of this one.

By the analysis we performed above, if |x| ≥ 1 the individual terms of the To avoid divergence,
|x| must be less than 1series clearly don’t go to 0, and the series therefore diverges. What about

the case where |x| < 1?
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The starting point is the partial sums. A typical partial sum looks like:

Sn = 1 + x + x2 + x3 + · · ·+ xn .

This is a finite number; we must find out what happens to it as n growsA simple expression for
the partial sum Sn without bound. Since Sn is finite, we can calculate with it. In particular,

xSn = x + x2 + x3 + · · ·+ xn + xn+1.

Subtracting the second expression from the first, we get

Sn − xSn = 1 − xn+1,

and thus (if x 6= 1)

Sn =
1 − xn+1

1 − x
.

(What is the value of Sn if x = 1?)
This is a handy, compact form for the partial sum. Let us see what value

it has for various values of x. For example, if x = 1/2, then

n : 1 2 3 4 5 6 · · · → ∞

Sn : 1
3

2

7

4

15

8

31

16

63

32
· · · → 2

It appears that as n → ∞, Sn → 2. Can we see this algebraically?Finding the limit of Sn

as n → ∞
Sn =

1 − (1/2)n+1

1 − 1
2

=
1 − (1/2)n+1

1/2

= 2 · (1 − (1/2)n+1) = 2 − (1/2)n.

As n → ∞, (1/2)n → 0, so the values of Sn become closer and closer to 2.
The series converges, and its sum is 2.

Similarly, when x = −1/2, the partial sums areSumming another
geometric series

Sn =
1 − (−1/2)n+1

3/2
=

2

3

(

1 ± 1

2n+1

)

.

The presence of the ± sign does not alter the outcome: since (1/2n+1) → 0,
the partial sums converge to 2/3. Therefore, we can say the series converges
and its sum is 2/3.
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In exactly the same way, though, for any x satisfying |x| < 1 we have

Sn =
1 − xn+1

1 − x
=

1

1 − x
(1 − xn+1),

and as n → ∞, xn+1 → 0. Therefore, Sn → 1/(1 − x). Thus the series
converges, and its sum is 1/(1 − x).

To summarize, we have thus proved that Convergence and
divergence of the
geometric series

The geometric series

G(x) = 1 + x + x2 + x3 + x4 + · · ·

converges for all x such that |x| < 1. In such cases the sum is

1

1 − x
.

The series diverges for all other values of x.

As a final comment, note that the formula

Sn =
1 − xn+1

1 − x

is valid for all x except x = 1. Even though the partial sums aren’t converging
to any limit if x > 1, the formula can still be useful as a quick way for
summing powers. Thus, for instance

1 + 3 + 9 + 27 + 81 + 243 =
1 − 36

1 − 3
=

1 − 729

−2
=

−728

−2
= 364,

and

1 − 5 + 25 − 125 + 625 − 3125 =
1 − (−5)6

1 − (−5)
=

1 − 15625

6
= −264.

Alternating Series

A large class of common power series consists of the alternating series— Many common series
are alternating, at least

for some values of x
series in which the terms are alternately positive and negative. The behavior
of such series is particularly easy to analyze, as we shall see in this section.
Here are some examples of alternating series we’ve already encountered :
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sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · · ,

[.15in] cos x = 1 − x2

2!
+

x4

4!
− x6

6!
+ · · · ,

[.15in]
1

1 + x2
= 1 − x2 + x4 − x6 + · · · , (for |x| < 1).

Other series may be alternating for some, but not all, values of x. For
instance, here are two series that are alternating for negative values of x, but
not for positive values:

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · ,

ln(1 − x) = −(x + x2 + x3 + x4 + · · · ) (for |x| < 1).

Convergence criterion for alternating series. Let us write a generic
alternating series as

b0 − b1 + b2 − b3 + · · · + (−1)mbm + · · · ,

where the bm are positive. It turns out that an alternating series converges
if the terms bm both consistently shrink in size and approach zero:

b0 − b1 + b2 − b3 + · · ·+ (−1)mbm + · · · converges if

0 < bm+1 ≤ bm for all m and lim
m→∞

bm = 0.

It is this property that makes alternating series particularly easy to dealAlternating series
are easy to test
for convergence

with. Recall that this is not a property of series in general, as we saw by the
example of the harmonic series. The reason it is true for alternating series
becomes clear if we view the behavior of the partial sums geometrically:

0 S0S1 S2S3 S4S5 S2m −1 S2m S

+b0
−b1

+b2
−b3

+b4

+b2m
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We mark the partial sums Sn on a number line. The first sum S0 = b0 lies
to the right of the origin. To find S1 we go to the left a distance b1. Because
b1 ≤ b0, S1 will lie between the origin and S0. Next we go to the right a
distance b2, which brings us to S2. Since b2 ≤ b1, we will have S2 ≤ S0. The
next move is to the left a distance b3, and we find S3 ≥ S1. We continue
going back and forth in this fashion, each step being less than or equal to
the preceding one, since bm+1 ≤ bm. We thus get

0 ≤ S1 ≤ S3 ≤ S5 ≤ . . . ≤ S2m−1 ≤ · · · ≤ S2m ≤ . . . ≤ S4 ≤ S2 ≤ S0.

The partial sums oscillate back and forth, with all the odd sums on the The partial sums
oscillate, with the

exact sum trapped
between consecutive

partial sums

left increasing and all the even sums on the right decreasing. Moreover, since
|Sn−Sn−1| = bn, and since limn→∞ bn = 0, the difference between consecutive
partial sums eventually becomes arbitrarily small—the oscillations take place
within a smaller and smaller interval. Thus given any number of decimal
places, we can always go far enough out in the series so that Sk and Sk+1 agree
to that many decimal places. But if n is any integer greater than k, then,
since Sn lies between Sk and Sk+1, Sn will also agree to that many decimal
places—those decimals will be fixed from k on out. The series therefore
converges, as claimed—the sum is the unique number S that is greater than
all the odd partial sums and less than all the even partial sums.

For a convergent alternating series, we also have a particularly simple A simple estimate
for the accuracy

of the partial sums
bound for the error when we approximate the sum S of the series by partial
sums.

If Sn = b0 − b1 + b2 − · · · ± bn,

and if 0 < bm+1 ≤ bm for all m and lim
m→∞

bm = 0,

(so the series converges), then

|S − Sn| < bn+1.

In words, the error in approximating S by Sn is less than the next
term in the series.

Proof: Suppose n is odd. Then we have, as above, that Sn < S < Sn+1.
Therefore 0 < S − Sn < Sn+1 − Sn = bn+1. If n is even, a similar argument
shows 0 < Sn−S < Sn−Sn+1 = bn+1. In either case, we have |S−Sn| < bn+1,
as claimed.
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Note further that we also know whether Sn is too large or too small,
depending on whether n is even or odd.

Example. Let’s apply the error estimate for an alternating series to analyzeEstimating the error in
approximating cos(.7) the error if we approximate cos(.7) with a Taylor series with three terms:

cos(.7) ≈ 1 − 1

2!
(.7)2 +

1

4!
(.7)4 = 0.765004166 . . . .

Since the last term in this partial sum was an addition, this approximation
is too big. To get an estimate of how far off it might be, we look at the next
term in the series:

1

6!
(.7)6 = .0001634 . . . .

We thus know that the correct value for cos(.7) is somewhere in the interval

.76484 = .76500 − .00016 ≤ cos(.7) ≤ .76501,

so we know that cos(.7) begins .76 . . . and the third decimal is either a 4 or
a 5. Moreover, we know that cos(.7) = .765 rounded to 3 decimal places.

If we use the partial sum with four terms, we get

cos(.7) ≈ 1 − 1

2!
(.7)2 +

1

4!
(.7)4 − 1

6!
(.7)6 = .764840765 . . . ,

and the error would be less than

1

8!
(.7)8 = .0000014 . . . < .5 × 10−5,

so we could now say that cos(.7) = .76484 . . . .
If we wanted to know in advance how far out in the series we would haveHow many terms

are needed
to obtain accuracy
to 12 decimal places?

to go to determine cos(.7) to, say, 12 decimals, we could do it by finding a
value for n such that

bn =
1

n!
(.7)n ≤ .5 × 10−12.

With a little trial and error, we see that b12 ≈ .3 × 10−10, while b14 < 10−13.
Thus if we take the value of the 12th degree approximation for cos(.7), we
can be assured that our value will be accurate to 12 places.

We have met this capability of getting an error estimate in a single step
before, in version 3 of Taylor’s theorem. It is in contrast to the approxima-
tions made in dealing with general series, where we typically had to look at
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the pattern of stabilizing digits in the succession of improving estimates to
get a sense of how good our approximation was, and even then we had no
guarantee.

Computing e. Because of the fact that we can find sharp bounds for the It may be possible
to convert

a given problem
to one involving

alternating series

accuracy of an approximation with alternating series, it is often desirable to
convert a given problem to this form where we can. For instance, suppose
we wanted a good value for e. The obvious thing to do would be to take the
Taylor series for ex and substitute x = 1. If we take the first 11 terms of this
series we get the approximation

e = e1 ≈ 1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

10!
= 2.718281801146 . . . ,

but we have no way of knowing how many of these digits are correct.
Suppose instead, that we evaluate e−1:

e−1 ≈ 1 − 1 +
1

2!
− 1

3!
+ · · ·+ 1

10!
= .367879464286 . . . .

Since 1/(11!) = .000000025 . . ., we know this approximation is accurate to at
least 7 decimals. If we take its reciprocal we get

1/.3678794624286 . . . = 2.718281657666 . . . ,

which will then be accurate to 6 decimals (in the exercises you will show why
the accuracy drops by 1 decimal place), so we can say e = 2.718281 . . . .

The Radius of Convergence

We have seen examples of power series that converge for all x (like the Taylor
series for sin x) and others that converge only for certain x (like the series
for arctan x). How can we determine the convergence of an arbitrary power
series of the form

a0 + a1x + a2x
2 + a3x

3 + · · · + anx
n + · · · ?

We must suspect that this series may not converge for all values of x. For
example, does the Taylor series

1 + x +
1

2!
x2 +

1

3!
x3 + · · ·
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converge for all values of x, or only some? When it converges, does it converge
to ex or to something else? After all, this Taylor series is designed to look
like ex only near x = 0; it remains to be seen how well the function and its
series match up far from x = 0.

The question of convergence has a definitive answer. It goes like this: if
the power series

a0 + a1x + a2x
2 + a3x

3 + · · ·+ anxn + · · · .

converges for a particular value of x, say x = s, then it automatically
converges for any smaller value of x (meaning any x that is closer to theThe answer to the

convergence question origin than s is; i.e, any x for which |x| < |s|). Likewise, if the series diverges

for a particular value of x, then it also diverges for any value farther from
the origin. In other words, the values of x where the series converges are
not interspersed with the values where it diverges. On the contrary, within
a certain distance R from the origin there is only convergence, while beyond
that distance there is only divergence. The number R is called the radius

of convergence of the series, and the range where it converges is called its
interval of convergence.

- x−R 0 R

series converges here
︷ ︸︸ ︷

︸ ︷︷ ︸

diverges here
︸ ︷︷ ︸

diverges here

The radius of convergence of a power series

An obvious example of the radius of convergence is given by the geometric
series

1

1 − x
= 1 + x + x2 + x3 + · · ·

We know that this converges for |x| < 1 and diverges for |x| > 1. Thus theRadius of convergence
of the geometric series radius of convergence is R = 1 in this case.

It is possible for a power series to converge for all x; if that happens,
we take R to be ∞. At the other extreme, the series may converge only
for x = 0. (When x = 0 the series collapses to its constant term a0, so it
certainly converges at least when x = 0.) If the series converges only for
x = 0, then we take R to be 0.

At x = R the series may diverge or converge; different things happen for
different series. The same is true when x = −R. The radius of convergence
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tells us where the switch from convergence to divergence happens. It does
not tell us what happens at the place where the switch occurs. If we know
that the series converges for x = ±R, then we say that [−R, R] is the interval
of convergence. If the series converges when x = R but not when x = −R,
then the interval of convergence is (−R, R], and so on.

The Ratio Test

There are several ways to determine the radius of convergence of a power
series. One of the simplest and most useful is by means of the ratio test.
Because the power series to which we apply this test need not include con-

secutive powers of x (think of the Taylor series for cosx or sin x) we’ll write
a “generic” series as

b0 + b1 + b2 + · · · =

∞∑

m=0

bm

Here are three examples of the use of this notation.

1. The Taylor series for ex is

∞∑

m=0

bm, where

b0 = 1, b1 = x, b2 =
x2

2!
, · · · , bm =

xm

m!
.

2. The Taylor series for cosx is

∞∑

m=0

bm, where

b0 = 1, b1 =
−x2

2!
, b2 =

x4

4!
, · · · , bm = (−1)m x2m

(2m)!
.

3. We can even describe the series

17 + x + x2 + x4 + x6 + x8 + · · · = 17 + x +

∞∑

m=2

x2m−2

in our generic notation, in spite of the presence of the first two terms
“17 + x” which don’t fit the pattern of later ones. We have b0 = 17,
b1 = x, and then bm = x2m−2 for m = 2, 3, 4, . . . .
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The question of convergence for a power series is unaffected by the “be-Convergence is
determined by the
“tail” of the series

ginning” of the series; only the pattern in the “tail” matters. (Of course the
value of the power series is affected by all of its terms.) So we can modify
our generic notation to fit the circumstances at hand. No harm is done if we
don’t begin with b0.

Using this notation we can state the ratio test (but we give no proof).

Ratio Test: the series b0 + b1 + b2 + b3 + · · · + bn + · · ·

converges if lim
m→∞

|bm+1|

|bm|
< 1.

Let’s see what the ratio test says about the geometric series:The ratio test for the
geometric series . . .

1 + x + x2 + x3 + · · · .

We have bm = xm, so the ratio we must consider is

|bm+1|
|bm|

=
|xm+1|
|xm| =

|x|m+1

|x|m = |x|.

(Be sure you see why |xm| = |x|m.) Obviously, this ratio has the same value
for all m, so the limit

lim
m→∞

|x| = |x|

exists and is less than 1 precisely when |x| < 1. Thus the geometric series
converges for |x| < 1—which we already know is true. This means that the
radius of convergence of the geometric series is R = 1.

Look next at the Taylor series for ex:. . . and for ex

1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · =

∞∑

m=0

xm

m!
.

For negative x this is an alternating series, so by the criterion for convergence
of alternating series we know it converges for all x < 0. The radius of
convergence should then be ∞. We will use the ratio test to show that in
fact this series converges for all x.

In this case

bm =
xm

m!
,
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so the relevant ratio is

|bm+1|
|bm|

=

∣
∣
∣
∣

xm+1

(m + 1)!

∣
∣
∣
∣
·
∣
∣
∣
∣

m!

xm

∣
∣
∣
∣
=

|xm+1|
|xm| · m!

(m + 1)!
= |x| · 1

m + 1
=

|x|
m + 1

.

Unlike the example with the geometric series, the value of this ratio depends
on m. For any particular x, as m gets larger and larger the numerator stays
the same and the denominator grows, so this ratio gets smaller and smaller.
In other words,

lim
m→∞

|bm+1|
|bm|

= lim
m→∞

|x|
m + 1

= 0.

Since this limit is less than 1 for any value of x, the series converges for all x,
and thus the radius of convergence of the Taylor series for ex is R = ∞, as
we expected.

One of the uses of the theory developed so far is that it gives us a new
way of specifying functions. For example, consider the power series

∞∑

m=0

(−1)m 2m

m2 + 1
xm = 1 − x +

4

5
x2 − 8

10
x3 +

16

17
x4 + · · · .

In this case bm = (−1)m 2m

m2 + 1
xm, so to find the radius of convergence, we

compute the ratio

|bm+1|
|bm|

=
2m+1|x|m+1

(m + 1)2 + 1
· m2 + 1

2m|x|m = 2|x| m2 + 1

m2 + 2m + 2
.

To figure out what happens to this ratio as m grows large, it is helpful to Finding the limit of
|bm+1|/|bm| may

require some algebra
rewrite the factor involving the m’s as

m2 · (1 + 1/m2)

m2 · (1 + 2/m + 2/m2)
=

1 + 1/m2

1 + 2/m + 2/m2
.

Now we can see that

lim
m→∞

|bm+1|
|bm|

= 2|x| · 1

1
= 2|x|.

The limit value is less than 1 precisely when 2|x| < 1, or, equivalently,
|x| < 1/2, so the radius of convergence of this series is R = 1/2. It follows
that for |x| < 1/2, we have a new function f(x) defined by the power series:

f(x) =

∞∑

m=0

(−1)m 2m

m2 + 1
xm.
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We can also discuss the radius of convergence of a power series

a0 + a1(x − a) + a2(x − a)2 + · · · + am(x − a)m + · · ·

centered at a location x = a other than the origin. The radius of convergence
of a power series of this form can be found by the ratio test in exactly the
same way it was when a = 0.

Example. Let’s apply the ratio test to the Taylor series centered at a = 1
for ln(x):

ln(x) =

∞∑

m=1

(−1)m−1

m
(x − 1)m.

We can start our series with b1, so we can take bm =
(−1)m−1

m
(x−1)m. Then

the ratio we must consider is

|bm+1|
|bm|

=
|x − 1|m+1

m + 1
· m

|x − 1|m = |x − 1| · m

m + 1
= |x − 1| · 1

1 + 1/m
.

Then

lim
m→∞

|bm+1|
|bm|

= |x − 1| · 1 = |x − 1|.

From this we conclude that this series converges for |x − 1| < 1. This in-
equality is equivalent to

−1 < x − 1 < 1,

which is an interval of “radius” 1 about a = 1, so the radius of convergence
is R = 1 in this case. We may also write the interval of convergence for this
power series as

0 < x < 2.

More generally, using the ratio test we find that a power series centered
at a converges in an interval of “radius” R (and width 2R) around the point
x = a on the x-axis. Ignoring what happens at the endpoints, we say the
interval of convergence is

a − R < x < a + R.

Here is a picture of what this looks like:
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- x
a − R a a + R

convergence
︷ ︸︸ ︷

︸ ︷︷ ︸

divergence
︸ ︷︷ ︸

divergence

The convergence of a power series centered at a

Exercises

1. Find a formula for the sum of each of the following power series by
performing suitable operations on the geometric series and the formula for
its sum.

a) 1 − x3 + x6 − x9 + · · · . d) x + 2x2 + 3x3 + 4x4 + · · · .

b) x2 + x6 + x10 + x14 + · · · . e) x +
x2

2
+

x3

3
+

x4

4
+ · · · .

c) 1 − 2x + 3x2 − 4x3 + · · · .

2. Determine the value of each of the following infinite sums. (Each os these
sums is a geometric or related series evaluated at a particular value of x.)

a)
1

4
+

1

16
+

1

64
+

1

256
+ · · · . d)

1

1
− 2

2
+

3

4
− 4

8
+

5

16
− 6

32
+ · · · .

b) .02020202 . . . . e)
1

1 · 10
+

1

2 · 102
+

1

3 · 103
+

1

4 · 104
+ · · · .

c) −5

2
+

5

4
− 5

8
+ · · · .

3. The Multiplier Effect. Economists know that the effect on a local
economy of tourist spending is greater than the amount actually spent by
the tourists. The multiplier effect quantifies this enlarged effect. In this
problem you will see that calculating the multiplier effect involves summing
a geometric series.

Suppose that, over the course of a year, tourists spend a total of A dollars
in a small resort town. By the end of the year, the townspeople are therefore
A dollars richer. Some of this money leaves the town—for example, to pay
state and federal taxes or to pay off debts owed to “big city” banks. Some of
it stays in town but gets put away as savings. Finally, a certain fraction of the
original amount is spent in town, by the townspeople themselves. Suppose
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3/5-ths is spent this way. The tourists and the townspeople together are
therefore responsible for spending

S = A +
3

5
A dollars

in the town that year. The second amount—3
5
A dollars—is recirculated

money.
Since one dollar looks much like another, the recirculated money should

be handled the same way as the original tourist dollars: some will leave the
town, some will be saved, and the remaining 3/5-ths will get recirculated a
second time. The twice-recirculated amount is

3

5
× 3

5
A dollars,

and we must revise the calculation of the total amount spent in the town to

S = A +
3

5
A +

(
3

5

)2

A dollars.

But the twice-recirculated dollars look like all the others , so 3/5-ths of them
will get recirculated a third time. Revising the total dollars spent yet again,
we get

S = A +
3

5
A +

(
3

5

)2

A +

(
3

5

)3

A dollars.

This process never ends: no matter how many times a sum of money has
been recirculated, 3/5-ths of it is recirculated once more. The total amount
spend in the town is thus given by a series.

a) Write the series giving the total amount of money spent in the town and
calculate its sum.

b) Your answer in a) is a certain multiple of A—what is the multiplier?

c) Suppose the recirculation rate is r instead of 3/5. Write the series giving
the total amount spent and calculate its sum. What is the multiplier now?

d) Suppose the recirculation rate is 1/5; what is the multiplier in this case?

e) Does a lower recirculation rate produce a smaller multiplier effect?
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4. Which of the following alternating series converge, which diverge? Why?

a)

∞∑

n=1

(−1)n n

n2 + 1

b)

∞∑

n=1

(−1)n 1√
3n + 2

c)

∞∑

n=2

(−1)n n

ln n

d)
∞∑

n=1

(−1)n n

5n − 4

e)
∞∑

n=1

(−1)n arctann

n

f)

∞∑

n=1

(−1)n (1.0001)n

n10 + 1

g)

∞∑

n=1

(−1)n 1

n1/n

h)

∞∑

n=2

(−1)n 1

ln n

i)
∞∑

n=1

(−1)n n!

nn

j)
∞∑

n=1

(−1)n n!

1 · 3 · 5 · · · (2n − 1)

5. For each of the sums in the preceding problem that converges, use the
alternating series criterion to determine how far out you have to go before
the sum is determined to 6 decimal places. Give the sum for each of these
series to this many places.

6. Find a value for n so that the nth degree Taylor series for ex gives at
least 10 place accuracy for all x in the interval [−3, 0].

7. We defined the harmonic series as the infinite sum

1 +
1

2
+

1

3
+

1

4
+ · · · =

∞∑

i=1

1

i
.

a) Use a calculator to find the partial sums

Sn = 1 +
1

2
+

1

3
+

1

4
+ · · · 1

n

for n = 1, 2, 3, . . . , 12.

b) Use the following program to find the value of Sn for n = 100. Modify
the program to find the values of Sn for n = 500, 1000, and 5000.
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Program: HARMONIC

n = 100

sum = 0

FOR i = 1 TO n

sum = sum + 1/i

NEXT i

PRINT n, sum

c) Group the terms in the harmonic series as indicated by the parentheses:

1 +

(
1

2

)

+

(
1

3
+

1

4

)

+

(
1

5
+

1

6
+

1

7
+

1

8

)

+

+

(
1

9
+ · · · + 1

16

)

+

(
1

17
+ · · ·+ 1

32

)

+ · · · .

Explain why each parenthetical grouping totals at least 1/2.

d) Following the pattern in part (c), if you add up the terms of the harmonic
series forming Sn for n = 2k, you can arrange the terms as 1 + k such
groupings. Use this fact and the result of c) to explain why Sn exceeds
1 + k · 1

2
.

e) Use part (d) to explain why the harmonic series diverges.

f) You might try this problem if you’ve studied physics—enough to know
how to locate the center of mass of a system. Suppose you had n cards and
wanted to stack them on the edge of a table with the top of the pile leaning
out over the edge. How far out could you get the pile to reach if you were
careful? Let’s choose our units so the length of each card is 1. Clearly if
n = 1, the farthest reach you could would be 1

2
. If n = 2, you could clearly

place the top card to extend half a unit
beyond the bottom card. For the system
to be stable, the center of mass of the two
cards must be to the left of the edge of
the table. Show that for this to happen,
the bottom card can’t extend more than
1/4 unit beyond the edge. Thus with n =
2 , the maximum extension of the pile is
1
2

+ 1
4

= 3
4
. The picture at the right shows

10 cards stacked carefully.



DVI file created at 18:01,  25 January 2008
Copyright 1994, 2008 Five Colleges, Inc.

10.5. CONVERGENCE 665

Prove that if you have n cards, the stack can be built to extend a distance of

1

2
+

1

4
+

1

6
+

1

8
+ · · ·+ 1

2n
=

1

2

(

1 +
1

2
+

1

3
+

1

4
+ · · · + 1

n

)

.

In the light of what we have just proved about the harmonic series, this
shows that if you had enough cards, you could have the top card extending
100 units beyond the edge of the table!

8. An estimate for the partial sums of the harmonic series. You
may notice in part (d) of the preceding problem that the sum Sn = 1+1/2+
1/3+ · · ·+1/n grows in proportion to the exponent k of n = 2k; i.e., the sum
grows like the logarithm of n. We can make this more precise by comparing
the value of Sn to the value of the integral

∫ n

1

1

x
dx = ln(n).

a) Let’s look at the case n = 6 to see what’s going on. Consider the following
picture:

1 2 3 4 5 6

1

2

y = 1/x

x

y

Show that the lightly shaded region plus the dark region has area equal
to S5 , which can be rewritten as S6 − 1

6
. Show that the dark region alone

has area S6 − 1. Hence prove that

S6 − 1 <

∫ 6

1

1

x
dx < S6 −

1

6
,

and conclude that
1

6
< S6 − ln(6) < 1.

b) Show more generally that
1

n
< Sn − ln(n) < 1.



DVI file created at 18:01,  25 January 2008
Copyright 1994, 2008 Five Colleges, Inc.

666 CHAPTER 10. SERIES AND APPROXIMATIONS

c) Use part (b) to get upper and lower bounds for the value of S10000.

[Answer: 9.21044 < S10000 < 10.21035.]

d) Use the result of part (b) to get an estimate for how many cards you
would need in part (f) of the preceding problem to make the top of the pile
extend 100 units beyond the edge of the table.

[Answer: It would take approximately 1087 cards—a number which is on the
same order of magnitude as the number of atoms in the universe!]

Remarkably, partial sums of the harmonic series exceed ln(n) in a very regular way. It turns out
that

lim
n→∞

{Sn − ln(n)} = γ,

where γ = .5772 . . . is called Euler’s constant. (You have seen another constant named for
Euler, the base e = 2.7183 . . ..) Although one can find the decimal expansion of γ to any desired
degree of accuracy, no one knows whether γ is a rational number or not.

9. Show that the power series for arctan x and (1 + x)c diverge for |x| > 1 .
Do the series converge or diverge when |x| = 1?

10. Find the radius of convergence of each of the following power series.

a) 1 + 2x + 3x2 + 4x3 + · · · .
b) x + 2x2 + 3x3 + 4x4 + · · · .

c) 1 +
1

12
x +

1

22
x2 +

1

32
x3 +

1

42
x4 + · · · . [Answer: R = 1]

d) x3 + x6 + x9 + x12 + · · · .
e) 1 + (x + 1) + (x + 1)2 + (x + 1)3 + · · · .

f) 17 +
1

3
x +

1

32
x2 +

1

33
x3 +

1

34
x4 + · · · .

11. Write out the first five terms of each of the following power series, and
determine the radius of convergence of each.

a)

∞∑

n=0

nxn. [Answer: R = 1]

b)
∞∑

n=0

n2

2n
xn. [Answer: R = 2]

c)

∞∑

n=0

(n + 5)2 xn. [Answer: R = 1]
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d)

∞∑

n=0

99

nn
xn. [Answer: R = ∞]

e)

∞∑

n=0

n! xn. [Answer: R = 0]

12. Find the radius of convergence of the Taylor series for sin x and for
cos x. For which values of x can these series therefore represent the sine and
cosine functions?

13. Find the radius of convergence of the Taylor series for f(x) = 1/(1+x2)
at x = 0. (See the table of Taylor series in section 3.) What is the radius
of convergence of this series? For which values of x can this series therefore
represent the function f? Do these x values constitute the entire domain of
definition of f?

14. In the text we used the alternating series for ex, x < 0, to approximate
e−1 accurate to 7 decimal places. The claim was made that in taking the
reciprocal to obtain an estimate for e, the accuracy drops by one decimal
place. In this problem you will see why this is true.

a) Consider first the more general situation where two functions are recip-
rocals, g(x) = 1/f(x). Express g′(x) in terms of f(x) and f ′(x).

b) Use your answer in part a) to find an expression for the relative error

in g, ∆g/g(x) ≈ g′(x)∆x/g(x), in terms of f(x) and f ′(x). How does this
compare to the relative error in f?

c) Apply your results in part b) to the functions ex and e−x at x = 1. Since
e is about 7 times as large as 1/e, explain why the error in the estimate for
e should be about 7 times as large as the error in the estimate for 1/e.
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10.6 Approximation Over Intervals

A powerful result in mathematical analysis is the Stone-Weierstrass The-

orem, which states that given any continuous function f(x) and any interval
[a, b], there exist polynomials that fit f over this interval to any level of accu-
racy we care to specify. In many cases, we can find such a polynomial simply
by taking a Taylor polynomial of high enough degree. There are several
ways in which this is not a completely satisfactory response, however. First,
some functions (like the absolute value function) have corners or other places
where they aren’t differentiable, so we can’t even build a Taylor series at such
points. Second, we have seen several functions (like 1/(1 + x2)) that have a
finite interval of convergence, so Taylor polynomials may not be good fits no
matter how high a degree we try. Third, even for well-behaved functions like
sin(x) or ex, we may have to take a very high degree Taylor polynomial to
get the same overall fit that a much lower degree polynomial could achieve.

In this section we will develop the general machinery for finding polyno-
mial approximations to functions over given intervals. In chapter 12.4 we
will see how this same approach can be adapted to approximating periodic
functions by trigonometric polynomials.

Approximation by polynomials

Example. Let’s return to the problem introduced at the beginning of this
chapter: find the second degree polynomial which best fits the function sin(x)
over the interval [0, π]. Just as we did with the Taylor polynomials, though,Two possible criteria

for best fit before we can start we need to agree on our criterion for the best fit. Here
are two obvious candidates for such a criterion:

1. The second degree polynomial Q(x) is the best fit to sin(x) over the
interval [0, π] if the maximum separation between Q(x) and sin(x) is
smaller than the maximum separation between sin(x) and any other
second degree polynomial:

max
0≤x≤π

| sin(x) − Q(x)| is the smallest possible.

2. The second degree polynomial Q(x) is the best fit to sin(x) over the in-
terval [0, π] if the average separation between Q(x) and sin(x) is smaller
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than the average separation between sin(x) and any other second degree
polynomial:

1

π

∫ π

0

| sin(x) − Q(x)| dx is the smallest possible.

Unfortunately, even though their clear meanings make these two criteria very
attractive, they turn out to be largely unusable—if we try to apply either Why we don’t use

either criterioncriterion to a specific problem, including our current example, we are led into
a maze of tedious and unwieldy calculations.

Instead, we use a criterion that, while slightly less obvious than either of
the two we’ve already articulated, still clearly measures some sort of “best fit”
and has the added virtue of behaving well mathematically. We accomplish
this by modifying criterion 2 slightly. It turns out that the major difficulty
with this criterion is the presence of absolute values. If, instead of considering
the average separation between Q(x) and sin(x), we consider the average of
the square of the separation between Q(x) and sin(x), we get a criterion we
can work with. (Compare this with the discussion of the best-fitting line in
the exercises for chapter 9.3.) Since this is a definition we will be using for
the rest of this section, we frame it in terms of arbitrary functions g and h,
and an arbitrary interval [a, b]:

Given two functions g and h defined over an interval [a, b], we
define the mean square separation between g and h over this
interval to be

1

(b − a)

∫ b

a

(g(x) − h(x))2 dx.

Note: In this setting the word mean is synonymous with what we have called
“average”. It turns out that there is often more than one way to define the
term “average”—the concepts of median and mode are two other natural
ways of capturing “averageness”, for instance—so we use the more technical
term to avoid ambiguity.

We can now rephrase our original problem as: find the second degree The criterion
we shall usepolynomial Q(x) whose mean squared separation from sin(x) over the inter-

val [0, π] is as small as possible. In mathematical terms, we want to find
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coefficients a0, a1, and a2 which such that the integral
∫ π

0

(
sin(x) − (a0 + a1 x + a2 x2)

)2
dx

is minimized. The solution Q(x) is called the quadratic least squares ap-

proximation to sin(x) over [0, π].
The key to solving this problem is to observe that a0, a1, and a2 can take

on any values we like and that this integral can thus be considered a function
of these three variables. For instance, if we couldn’t think of anything cleverer
to do, we might simply try various combinations of a0, a1, and a2 to see how
small we could make the given integral. Therefore another way to phrase our
problem is

A mathematical
formulation of the
problem

Find values for a0, a1, and a2 that minimize the function

F (a0, a1, a2) =

∫ π

0

(
sin(x) − (a0 + a1 x + a2 x2)

)2
dx .

We know how to find points where functions take on their extreme values—
we look for the places where the partial derivatives are 0. But how do we
differentiate an expression involving an integral like this? It turns out that
for all continuous functions, or even functions with only a finite number of
breaks in them, we can simply interchange integration and differentiation.
Thus, in our example,

∂

∂a0
F (a0, a1, a2) =

∂

∂a0

∫ π

0

(
sin(x) − (a0 + a1 x + a2 x2)

)2
dx

=

∫ π

0

∂

∂a0

(
sin(x) − (a0 + a1 x + a2 x2)

)2
dx

=

∫ π

0

2
(
sin(x) − (a0 + a1 x + a2 x2)

)
(−1) dx.

Similarly we have

∂

∂a1

F (a0, a1, a2) =

∫ π

0

2
(
sin(x) − (a0 + a1 x + a2 x2)

)
(−x) dx,

∂

∂a2

F (a0, a1, a2) =

∫ π

0

2
(
sin(x) − (a0 + a1 x + a2 x2)

)
(−x2) dx.
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We now want to find values for a0, a1, and a2 that make these partial Setting the partials
equal to zero gives

equations for a0, a1, a2

derivatives simultaneously equal to 0. That is, we want

∫ π

0

2
(
sin(x) − (a0 + a1 x + a2 x2)

)
(−1) dx = 0,

∫ π

0

2
(
sin(x) − (a0 + a1 x + a2 x2)

)
(−x) dx = 0,

∫ π

0

2
(
sin(x) − (a0 + a1 x + a2 x2)

)
(−x2) dx = 0,

which can be rewritten as

∫ π

0

sin(x) dx =

∫ π

0

(
a0 + a1 x + a2 x2

)
dx,

∫ π

0

x sin(x) dx =

∫ π

0

(
a0 x + a1 x2 + a2 x3

)
dx,

∫ π

0

x2 sin(x) dx =

∫ π

0

(
a0 x2 + a1 x3 + a2 x4

)
dx.

All of these integrals can be evaluated relatively easily (see the exercises Evaluating the
integrals gives three

linear equations
for a hint on evaluating the integrals on the left–hand side). When we do so,
we are left with

2 = πa0 +
π2

2
a1 +

π3

3
a2,

π =
π2

2
a0 +

π3

3
a1 +

π4

4
a2,

π2 − 4 =
π3

3
a0 +

π4

4
a1 +

π5

5
a2.

But this is simply a set of three linear equations in the unknowns a0, a1,
and a2, and they can be solved in the usual ways. We could either replace
each expression in π by a corresponding decimal approximation, or we could
keep everything in terms of π. Let’s do the latter; after a bit of tedious
arithmetic we find
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a0 =
12

π
− 120

π3
= −.050465 . . . ,

a1 =
−60

π2
+

720

π4
= 1.312236 . . . ,

a2 =
60

π3
− 720

π5
= −.417697 . . . ,

and we have

Q(x) = −.050465 + 1.312236 x− .417698 x2,

which is the equation given in section 1 at the beginning of the chapter.
The analysis we gave for this particular case can clearly be generalized to

How to find least
squares polynomial
approximations in
general

apply to any function over any interval. When we do this we get

Given a function g over an interval [a, b], then the n-th degree
polynomial

P (x) = c0 + c1 x + c2 x2 + · · ·+ cn xn

whose mean square distance from g is a minimum has coefficients
that are determined by the following n + 1 equations in the n + 1
unknowns c0, c1, c2, . . . , cn:

∫ b

a

g(x) dx = c0

∫ b

a

dx + c1

∫ b

a

x dx + · · ·+ cn

∫ b

a

xn dx,

∫ b

a

x g(x) dx = c0

∫ b

a

x dx + c1

∫ b

a

x2 dx + · · ·+ cn

∫ b

a

xn+1 dx,

...
∫ b

a

xn g(x) dx = c0

∫ b

a

xn dx + c1

∫ b

a

xn+1 dx + · · · + cn

∫ b

a

x2n dx.

All the integrals on the right-hand side can be evaluated immediately. The
integrals on the left-hand side will typically need to be evaluated numerically,
although simple cases can be evaluated in closed form. Integration by parts
is often useful in these cases. The exercises contain several problems using
this technique to find approximating polynomials.
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The real catch, though, is not in obtaining the equations—it is that solv- Solving the equations is
a job for the computering systems of equations by hand is excruciatingly boring and subject to

frequent arithmetic mistakes if there are more than two or three unknowns
involved. Fortunately, there are now a number of computer packages avail-
able which do all of this for us. Here are a couple of examples, where the
details are left to the exercises.

Example. Let’s find polynomial approximation for 1/(1 + x2) over the in-
terval [0, 2]. We saw earlier that the Taylor series for this function converges
only for |x| < 1, so it will be no help. Yet with the above technique we can
derive the following approximations of various degrees (see the exercises for
details):

1 2

degree 1

1 2

degree 4

1 2

degree 3

1 2

degree 2

Here are the corresponding equations of the approximating polynomials:

degree polynomial

1 1.00722 − .453645 x

2 1.08789 − .695660 x + .121008 x2

3 1.04245 − .423017 x− .219797 x2 + .113602 x3

4 1.00704 − .068906 x− 1.01653 x2 + .733272 x3 − .154916 x4

Example. We can even use this new technique to find polynomial approxi- The technique works
even when

differentiability fails
mations for functions that aren’t differentiable at some points. For instance,
let’s approximate the function h(x) = |x| over the interval [−1, 1]. Since this
function is symmetric about the y–axis, and we are approximating it over
an interval that is symmetric about the y–axis, only even powers of x will
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appear. (See the exercises for details.) We get the following approximations
of degrees 2, 4, 6, and 8:

−1 1

degree 2

−1 1

degree 8

−1 1

degree 6

−1 1

degree 4

Here are the corresponding polynomials:

degree polynomial

2 .1875 + .9375 x2

4 .117188 + 1.64062 x2 − .820312 x4

6 .085449 + 2.30713 x2 − 2.81982 x4 + 1.46631 x6

8 .067291 + 2.960821 x2 − 6.415132 x4 + 7.698173 x6 − 3.338498 x8

A Numerical Example. If we have some function which exists only as aThe technique is useful
for data functions set of data points—a numerical solution to a differential equation, perhaps,

or the output of some laboratory instrument—it can often be quite useful
to replace the function by an approximating polynomial. The polynomial
takes up much less storage space and is easier to manipulate. To see how
this works, let’s return to the S-I-R model we’ve studied before

S ′ = −.00001 SI,

I ′ = .00001 SI − I/14,

R′ = I/14,

with initial values S(0) = 45400 and I(0) = 2100.
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Let’s find an 8th degree polynomial Q(t) = i0 + i1t + i2t
2 + · · · + i8t

8

approximating I over the time interval 0 ≤ t ≤ 40. We can do this by
a minor modification of the Euler’s method programs we’ve been using all
along. Now, in addition to keeping track of the current values for S and I
as we go along, we will also need to be calculating Riemann sums for the
integrals

∫ 40

0

tkI(t) dt for k = 0, 1, 2, . . . , 8,

as we go through each iteration of Euler’s method.
Since the numbers involved become enormous very quickly, we open our-

selves to various sorts of computer roundoff error. We can avoid some of these The importance
of using the

right-sized units
difficulties by rescaling our equations—using units that keep the numbers
involved more manageable. Thus, for instance, suppose we measure S, I,
and R in units of 10,000 people, and suppose we measure time in “deca-
days”, where 1 decaday = 10 days. When we do this, our original differential
equations become

S ′ = −SI,

I ′ = SI − I/1.4,

R′ = I/1.4,

with initial values S(0) = 4.54 and I(0) = 0.21. The integrals we want are
now of the form

∫ 4

0

tkI(t) dt for k = 0, 1, 2, . . . , 8.

The use of Simpson’s rule (see chapter 11.3) will also reduce errors. It may Using Simpson’s rule
helps reduce errorsbe easiest to calculate the values of I first, using perhaps 2000 values, and

store them in an array. Once you have this array of I values, it is relatively
quick and easy to use Simpson’s rule to calculate the 9 integrals needed. If
you later decide you want to get a higher-degree polynomial approximation,
you don’t have to re-run the program.

Once we’ve evaluated these integrals, we set up and solve the correspond-
ing system of 9 equations in the 9 unknown coefficients ik. We get the
following 8-th degree approximation

Q(t) = .3090 − .9989 t + 7.8518 t2 − 3.6233 t3 − 3.9248 t4 + 4.2162 t5

− 1.5750 t6 + .2692 t7 − .01772 t8 .
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When we graph Q and I together over the interval [0, 4] (decadays), we
get

0.5

1.0

1.5

2.0

2.5

1 2 3 4 t

y
y = I(t) y = Q(t)

—a reasonably good fit.

A Caution. Numerical least-squares fitting of the sort performed in this
last example fairly quickly pushes into regions where the cumulative effects
of the inaccuracies of the original data, the inaccuracies of the estimates
for the integrals, and the immense range in the magnitude of the numbers
involved all combine to produce answers that are obviously wrong. Rescaling
the equations and using good approximations for the integrals can help put
off the point at which this begins to happen.

Exercises

1. To find polynomial approximations for sin(x) over the interval [0, π], we
needed to be able to evaluate integrals of the form

∫ π

0

xn sin(x) dx.

The value of this integral clearly depends on the value of n, so denote it
by In.

a) Evaluate I0 and I1. Suggestion: use integration by parts (Chapter 11.3)
to evaluate I1.

[Answer: I0 = 2, and I1 = π.]

b) Use integration by parts twice to prove the general reduction formula:

In+2 = πn+2 − (n + 2)(n + 1)In for all n ≥ 0.
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c) Evaluate I2, I3, and I4.

[Answer: I2 = π2 − 4, I3 = π3 − 6π, and I4 = π4 − 12π2 + 48.]

d) If you have access to a computer package that will solve a system of
equations, find the 4-th degree polynomial that best fits the sine function over
the interval [0, π]. What is the maximum difference between this polynomial
and the sine function over this interval?

[Answer: .00131+.98260 x+.05447 x2−.23379 x3+.03721 x4, with maximum
difference occuring at the endpoints.]

2. To find polynomial approximations for |x| over the interval [−1, 1], we
needed to be able to evaluate integrals of the form

∫ 1

−1

xn|x| dx.

As before, let’s denote this integral by In.

a) Show that

In =







2

n + 2
if n is even,

0 if n is odd.

b) Derive the quadratic least squares approximation to |x| over [−1, 1].

c) If you have access to a computer package that will solve a system of
equations, find the 10-th degree polynomial that best fits |x| over the interval
[−1, 1]. What is the maximum difference between this polynomial and |x|
over this interval?

3. To find polynomial approximations for 1/(1+x2) over the interval [0, 2],
we needed to be able to evaluate integrals of the form

∫ 2

0

xn

1 + x2
dx.

Call this integral In.

a) Evaluate I0 and I1.

[Answer: I0 = arctan(1) = π/4, and I1 = (ln 2)/2 = .3465736.]

b) Prove the general reduction formula:

In+2 =
2n+1

n + 1
− In for n = 0, 1, 2, . . . .
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c) Evaluate I2, I3, and I4.

[Answer: I2 = 2 − π

4
, I3 = 2 − ln 2

2
, I4 =

2

3
+

π

4
.]

d) If you have access to a computer package that will solve a system of
equations, find the 4-th degree polynomial that best fits 1/(1 + x2) over the
interval [0, 2]. What is the maximum difference between this polynomial and
the function over this interval?

4. Set up the equations (including evaluating all the integrals) for finding
the best fitting 6-th degree polynomial approximation to sin(x) over the
interval [−π, π].

5. In the S-I-R model, find the best fitting 8-th degree polynomial approx-
imation to S(t) over the interval 0 ≤ t ≤ 40.

10.7 Chapter Summary

The Main Ideas

• Taylor polynomials approximate functions at a point. The Taylor
polynomial P (x) of degree n is the best fit to f(x) at x = a; that
is, P satisfies the following conditions: P (a) = f(a), P ′(a) = f ′(a),
P ′′(a) = f ′′(a), . . . , P (n)(a) = f (n)(a).

• Taylor’s theorem says that a function and its Taylor polynomial of
degree n agree to order n + 1 near the point where the polynomial is
centered. Different versions expand on this idea.

• If P (x) is the Taylor polynomial approximating f(x) at x = a, then
P (x) approximates f(x) for values of x near a; P ′(x) approximates
f ′(x); and

∫
P (x) dx approximates

∫
f(x) dx.

• A Taylor series is an infinite sum whose partial sums are Taylor poly-
nomials. Some functions equal their Taylor series; among these are the
sine, cosine and exponential functions.

• A power series is an “infinite” polynomial

a0 + a1x + axx
2 + · · · + anxn + · · · .
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If the solution of a differential equation can be represented by a power
series, the coefficients an can be determined by recursion relations

obtained by substituting the power series into the differential equation.

• An infinite series converges if, no matter how many decimal places
are specified, all the partial sums eventually agree to at least this many
decimal places. The number defined by these stabilizing decimals is
called the sum of the series. If a series does not converge, we say it
diverges.

• If the series
∑∞

m=0 bm converges, then limm→∞ bm = 0. The impor-
tant counter-example of the harmonic series

∑∞

m=1 1/m shows that
limm→∞ bm = 0 is a necessary but not sufficient condition to guarantee
convergence.

• The geometric series
∑∞

m=0 xm converges for all x with |x| < 1 and
diverges for all other x.

• An alternating series
∑∞

m=0(−1)mbm converges if 0 < bm+1 ≤ bm

for all m and limm→∞ bm = 0. For a convergent alternating series, the
error in approximating the sum by a partial sum is less than the next
term in the series.

• A convergent power series converges on an interval of convergence of
width 2R; R is called the radius of convergence. The ratio test can
be used to find the radius of convergence of a power series:

∑∞

m=0 bm

converges if limm→∞ |bm+1|/|bm| < 1.

• A polynomial P (x) = a0 + a1x + a2x
2 + · · ·+ anx

n is the best fitting

approximation to a function f(x) on an interval [a, b] if a0, a1, · · · , an

are chosen so that the mean squared separation between P and f

1

b − a

∫ b

a

(P (x) − f(x))2 dx

is as small as possible. The polynomial P is also called the least

squares approximation to f on [a, b].
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Expectations

• Given a differentiable function f(x) at a point x = a, you should be
able to write down any of the Taylor polynomials or the Taylor

series for f at a.

• You should be able to use the program TAYLOR to graph Taylor poly-
nomials.

• You should be able to obtain new Taylor polynomials by substitution,
differentiation, anti-differentiation and multiplication.

• You should be able to use Taylor polynomials to find the value of a
function to a specified degree of accuracy, to approximate integrals and
to find limits.

• You should be able to determine the order of magnitude of the agree-
ment between a function and one of its Taylor polynomials.

• You should be able to find the power series solution to a differential
equation.

• You should be able to test a series for divergence; you should be able
to check a series for convergence using either the alternating series

test or the ratio test.

• You should be able to find the sum of a geometric series and its
interval of convergence.

• You should be able to estimate the error in an approximation using
partial sums of an alternating series.

• You should be able to find the radius of convergence of a series using
the ratio test.

• You should be able to set up the equations to find the least squares

polynomial approximation of a particular degree for a given function on
a specified interval. Working by hand or, if necessary, using a computer
package to solve a system of equations, you should be able to find the
coefficients of the least squares approximation.


