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Preface: 2008 edition

We are publishing this edition of Calculus in Context online to make it freely
available to all users. It is essentially unchanged from the 1994 edition.

The continuing support of Five Colleges, Inc., and especially of the Five
College Coordinator, Lorna Peterson, has been crucial in paving the way for
this new edition. We also wish to thank the many colleagues who have shared
with us their experiences in using the book over the last twenty years—and
have provided us with corrections to the text.
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Preface: 1994 edition

Our point of view We believe that calculus can be for our students what
it was for Euler and the Bernoullis: A language and a tool for exploring
the whole fabric of science. We also believe that much of the mathematical
depth and vitality of calculus lies in these connections to the other sciences.
The mathematical questions that arise are compelling in part because the
answers matter to other disciplines as well.

The calculus curriculum that this book represents started with a “clean
slate;” we made no presumptive commitment to any aspect of the traditional
course. In developing the curriculum, we found it helpful to spell out our
starting points, our curricular goals, our functional goals, and our view
of the impact of technology. Our starting points are a summary of what
calculus is really about. Our curricular goals are what we aim to convey
about the subject in the course. Our functional goals describe the attitudes
and behaviors we hope our students will adopt in using calculus to approach
scientific and mathematical questions. We emphasize that what is missing
from these lists is as significant as what appears. In particular, we did not

not begin by asking what parts of the traditional course to include or discard.

Starting Points

• Calculus is fundamentally a way of dealing with functional rela-
tionships that occur in scientific and mathematical contexts. The
techniques of calculus must be subordinate to an overall view of the
underlying questions.

• Technology radically enlarges the range of questions we can ex-
plore and the ways we can answer them. Computers and graphing
calculators are much more than tools for teaching the traditional
calculus.

iii
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Starting Points—continued

• The concept of a dynamical system is central to science Therefore,
differential equations belong at the center of calculus, and technol-
ogy makes this possible at the introductory level.

• The process of successive approximation is a key tool of calculus,
even when the outcome of the process—the limit—cannot be ex-
plicitly given in closed form.

Curricular Goals

• Develop calculus in the context of scientific and mathematical ques-
tions.

• Treat systems of differential equations as fundamental objects of
study.

• Construct and analyze mathematical models.
• Use the method of successive approximations to define and solve

problems.
• Develop geometric visualization with hand-drawn and computer

graphics.
• Give numerical methods a more central role.

Functional Goals

• Encourage collaborative work.
• Empower students to use calculus as a language and a tool.
• Make students comfortable tackling large, messy, ill-defined prob-

lems.
• Foster an experimental attitude towards mathematics.
• Help students appreciate the value of approximate solutions.
• Develop the sense that understanding concepts arises out of working

on problems, not simply from reading the text and imitating its
techniques.

Impact of Technology

• Differential equations can now be solved numerically, so they can
take their rightful place in the introductory calculus course.

• The ability to handle data and perform many computations allows
us to explore examples containing more of the messiness of real
problems.

• As a consequence, we can now deal with credible models, and the
role of modelling becomes much more central to our subject.
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Impact of Technology—continued

• In particular, introductory calculus (and linear algebra) now have
something more substantial to offer to life and social scientists, as
well as to physical scientists, engineers and mathematicians.

• The distinction between pure and applied mathematics becomes
even less clear (or useful) than it may have been.

By studying the text you can see, quite explicitly, how we have pursued
the curricular goals. In particular, every one of those goals is addressed
within the very first chapter. It begins with questions about describing and
analyzing the spread of a contagious disease. A model is built, and the model
is a system of coupled non-linear differential equations. We then begin a
numerical assault on those equations, and the door is opened to a solution
by successive approximations.

Our implementation of the functional goals is less obvious, but it is still
evident. For instance, the text has many more words than the traditional
calculus book—it is a book to be read. Also, the exercises make unusual
demands on students. Most exercises are not just variants of examples that
have been worked in the text. In fact, the text has rather few simple “tem-
plate” examples.

Shifts in Emphasis It will also become apparent to you that the text
reflects substantial shifts in emphasis in comparison to the traditional course.
Here are some of the most striking:

How the emphasis shifts:

increase decrease

concepts techniques

geometry algebra

graphs formulas

brute force elegance

numerical closed-form
solutions solutions

Euler’s method is a good example of what we mean by “brute force.”
It is a general method of wide applicability. Of course when we use it to
solve a differential equation like y′(t) = t, we are using a sledgehammer to
crack a peanut. But at least the sledgehammer does work. Moreover, it
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works with coconuts (like y′ = y(1−y/10)), and it will just as happily knock
down a house (like y′ = cos2(t)). Of course, students also see the elegant
special methods that can be invoked to solve y′ = t and y′ = y(1 − y/10)
(separation of variables and partial fractions are discussed in chapter 11),
but they understand that they are fortunate indeed when a real problem will
succumb to these special methods.

Audience Our curriculum is not aimed at a special clientele. On the con-
trary, we think that calculus is one of the great bonds that unifies science, and
all students should have an opportunity to see how the language and tools
of calculus help forge that bond. We emphasize, though, that this is not a
“service” course or calculus “with applications,” but rather a course rich in
mathematical ideas that will serve all students well, including mathematics
majors. The student population in the first semester course is especially di-
verse. In fact, since many students take only one semester, we have aimed
to make the first six chapters stand alone as a reasonably complete course.
In particular, we have tried to present contexts that would be more or less
broadly accessible. The emphasis on the physical sciences is clearly greater
in the later chapters; this is deliberate. By the second semester, our stu-
dents have gained skill and insight that allows them to tackle this added
complexity.

Handbook for Instructors Working toward our curricular and functional
goals has stretched us as well as our students. Teaching in this style is
substantially different from the calculus courses most of us have learned from
and taught in the past. Therefore we have prepared a handbook based on
our experiences and those of colleagues at other schools. We urge prospective
instructors to consult it.

Origins The Five College Calculus Project has a singular history. It begins
almost thirty years ago, when the Five Colleges were only Four: Amherst,
Mount Holyoke, Smith, and the large Amherst campus of the University of
Massachusetts. These four resolved to create a new institution which would
be a site for educational innovation at the undergraduate level; by 1970,
Hampshire College was enrolling students and enlisting faculty.

Early in their academic careers, Hampshire students grapple with pri-
mary sources in all fields—in economics and ecology, as well as in history
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and literature. And journal articles don’t shelter their readers from home
truths: if a mathematical argument is needed, it is used. In this way, stu-
dents in the life and social sciences found, sometimes to their surprise and
dismay, that they needed to know calculus if they were to master their chosen
fields. However, the calculus they needed was not, by and large, the calculus
that was actually being taught. The journal articles dealt directly with the
relation between quantities and their rates of change—in other words, with
differential equations.

Confronted with a clear need, those students asked for help. By the mid-
1970s, Michael Sutherland and Kenneth Hoffman were teaching a course
for those students. The core of the course was calculus, but calculus as it
is used in contemporary science. Mathematical ideas and techniques grew
out of scientific questions. Given a process, students had to recast it as a
model; most often, the model was a set of differential equations. To solve
the differential equations, they used numerical methods implemented on a
computer.

The course evolved and prospered quietly at Hampshire. More than a
decade passed before several of us at the other four institutions paid some
attention to it. We liked its fundamental premise, that differential equations
belong at the center of calculus. What astounded us, though, was the reve-
lation that differential equations could really be at the center—thanks to the
use of computers.

This book is the result of our efforts to translate the Hampshire course for
a wider audience. The typical student in calculus has not been driven to study
calculus in order to come to grips with his or her own scientific questions—as
those pioneering students had. If calculus is to emerge organically in the
minds of the larger student population, a way must be found to involve that
population in a spectrum of scientific and mathematical questions. Hence,
calculus in context. Moreover, those contexts must be understandable to
students with no special scientific training, and the mathematical issues they
raise must lead to the central ideas of the calculus—to differential equations,
in fact.

Coincidentally, the country turned its attention to the undergraduate sci-
ence curriculum, and it focused on the calculus course. The National Science
Foundation created a program to support calculus curriculum development.
To carry out our plans we requested funds for a five-year project; we were for-
tunate to receive the only multi-year curriculum development grant awarded
in the first year of the NSF program. This text is the outcome of our effort.
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To the Student

In a typical high school math text, each section has a “technique” which you
practice in a series of exercises very like the examples in the text. This book
is different. In this course you will be learning to use calculus both as a tool
and as a language in which you can think coherently about the problems
you will be studying. As with any other language, a certain amount of time
will need to be spent learning and practicing the formal rules. For instance,
the conjugation of être must be almost second nature to you if you are to
be able to read a novel—or even a newspaper—in French. In calculus, too,
there are a number of manipulations which must become automatic so that
you can focus clearly on the content of what is being said. It is important
to realize, however, that becoming good at these manipulations is not the
goal of learning calculus any more than becoming good at declensions and
conjugations is the goal of learning French.

Up to now, most of the problems you have met in math classes have had
definite answers such as “17,” or “the circle with radius 1.75 and center at
(2,3).” Such definite answers are satisfying (and even comforting). However,
many interesting and important questions, like “How far is it to the planet
Pluto,” or “How many people are there with sickle-cell anemia,” or “What
are the solutions to the equation x5 + x + 1 = 0” can’t be answered exactly.
Instead, we have ways to approximate the answers, and the more time
and/or money we are willing to expend, the better our approximations may
be. While many calculus problems do have exact answers, such problems
often tend to be special or atypical in some way. Therefore, while you will be
learning how to deal with these “nice” problems, you will also be developing
ways of making good approximations to the solutions of the less well-behaved
(and more common!) problems.

The computer or the graphing calculator is a tool that that you will need
for this course, along with a clear head and a willing hand. We don’t assume
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that you know anything about this technology ahead of time. Everything
necessary is covered completely as we go along.

You can’t learn mathematics simply by reading or watching others. The
only way you can internalize the material is to work on problems yourself. It
is by grappling with the problems that you will come to see what it is you
do understand, and to see where your understanding is incomplete or fuzzy.

One of the most important intellectual skills you can develop is that of
exploring questions on your own. Don’t simply shut your mind down when
you come to the end of an assigned problem. These problems have been
designed not so much to capture the essence of calculus as to prod your
thinking, to get you wondering about the concepts being explored. See if
you can think up and answer variations on the problem. Does the problem
suggest other questions? The ability to ask good questions of your own is at
least as important as being able to answer questions posed by others.

We encourage you to work with others on the exercises. Two or three
of you of roughly equal ability working on a problem will often accomplish
much more than would any of you working alone. You will stimulate one
another’s imaginations, combine differing insights into a greater whole, and
keep up each other’s spirits in the frustrating times. This is particularly
effective if you first spend time individually working on the material. Many
students find it helpful to schedule a regular time to get together to work on
problems.

Above all, take time to pause and admire the beauty and power of what
you are learning. Aside from its utility, calculus is one of the most elegant and
richly structured creations of the human mind and deserves to be profoundly
admired on those grounds alone. Enjoy!
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