

HIGH CLUSTERING PROTECTS AGAINST CATASTROPHIC COLLAPSE OF COOPERATION

Gwen Spencer, PhD

VS.

Classical Prediction:

Stable network interactions should encourage cooperation.

- Outbreaks of cooperation
- Clustered Structure allows stability

EXPLAIN DISCREPANCY?

Q: Possible to Reconcile Classical Models with Modern Empirical Observations?

A: Yes. Predictions vary with parameters [3]

- High round-1 defection forces
 catastrophic collapse across topologies
 (Suri and Watts [4] documented ≈ 45%)
- Above *critical threshold*: clustering does protect cooperation against randomlydistributed *shocks of defection*.
 (*Gracia-Lázaro et al.* [1] only test low-clustering networks)

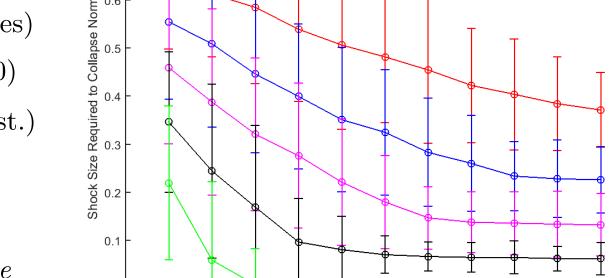
Randomly seed with defectors "Defection Shock" Cooperation Reaches "Catastrophic Collapse"

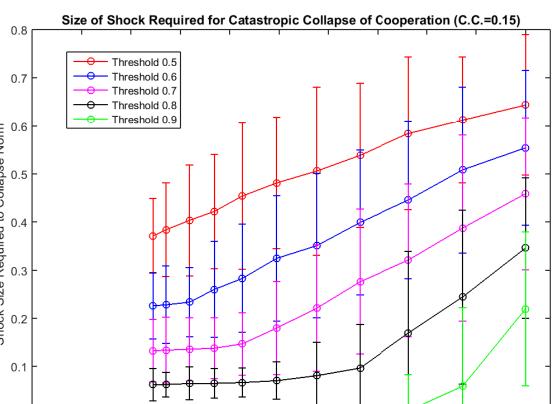
Mathematical Sciences Research Institute

What size *Defection Shock* at t = 0 is required to force a cooperative network into *Catastrophic Collapse of Cooperation*?

RESULTS: A Protective Effect of Clustering [3]

• Threshold-based Conditional Cooperation:

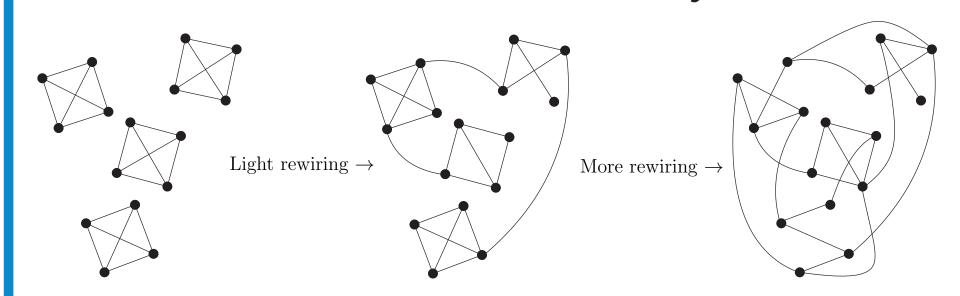

Increasing Rewiring Reduces Ability to Withstand *Defection Shocks*. Equivalently: High Clustering Increases Ability to Withstand *Defection Shocks*:


Protective Effect above critical threshold. Consistent behavior for:

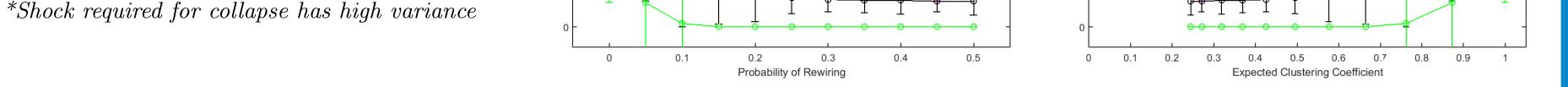
- small synthetic networks (50 vs. 200 nodes)

variable small community sizes (10 vs. 20)non-uniform community sizes (normal dist.)

large real-data example (1,421 nodes)
*Slope decreases to 0 for lowest thresholds h



• At *low cost of cooperation* (or, with many altruists) no protective effect predicted.


COMPLEX PARAMETER SPACE

Smooth Erosion of Community Structure:

Decision Rules for Spread:

• Conditional Cooperation: threshold h

Threshold 0.6
 Threshold 0.7

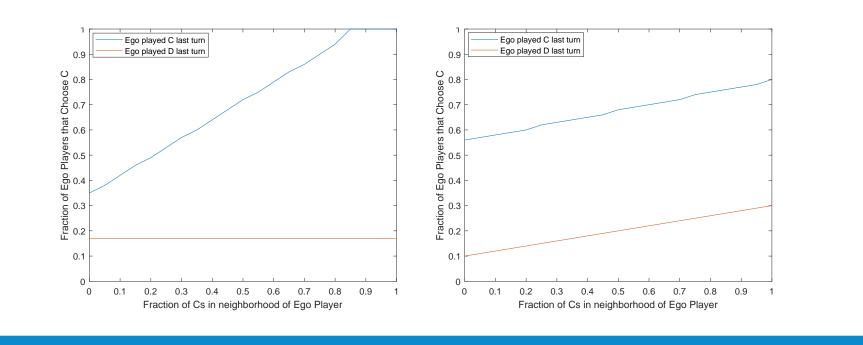

O Threshold 0.8

• A Novel View on Suri and Watts [4] Simple threshold-based model predicts: Catastrophic cooperation collapse was *the most likely outcome* across all topologies.

Network Topology	Estimated Probability of	2 Std. Dev confidence interval for	
Initial Defection Rate of 45%	Final Cooperation ≤ 0.30	number of final cooperators (of 24)	
Cliques	89.5%	4.3(+/-9.2)	
Paired Cliques	91.5%	4.1(+/-8.7)	
Cycle Cliques	94.0%	1.7(+/-7.1)	
Small World	99.5%	0.2(+/-3.6)	
Random Regular	99.5%	0.1(+/-3.4)	

• Moody Conditional Cooperation:

We study two Suites of Distributions over moody conditional cooperator Player Types:


Player Type	h_v^c	h_v^d
Base Type	0.6	0.9
Generous Type	0.1	0.4
Stingy Type	0.8	1.1

At time t, node $v \in V$ updates behavior depending on behavior of v's neighbor set, $\delta(v)$, at time (t - 1):

 $c_{t+1}(v) = \begin{cases} 1 & \text{if } \sum_{u \in \delta(v)} c_t(u) \ge h * |\delta(v)|, \\ 0 & \text{otherwise.} \end{cases}$

• Empirical Moody Conditional Coop [1, 2] - threshold conditioned on own past action

- heterogeneous population

Extra Takeaways: 1. Networks in *catastrophic collapse* are nearly impossible to distinguish.2. To refute role of topology in supporting cooperation, tests must examine a portion of the parameter space where a topology effect is truly predicted, and account for *round-1 defectors*.

REFERENCES

- [1] C. Gracia-Lázaro, A. Ferrer, G. Ruiz, and A. Tarancón, J.A. Cuesta, A. Sánchez, Y. Moreno, Heterogeneous networks do not promote cooperation when humans play a Prisoner's Dilemma. In *Proceedings of the National Academy* of Sciences, vol. 109, num. 32, 2012.
- [2] J. Grujić, C. Gracia-Lázaro, M. Milinski, D. Semmann, A. Traulsen, J. A. Cuesta, Y. Moreno, and A. Sánchez. A comparative analysis of spatial Prisoner's Dilemma experiments: Conditional cooperation and payoff irrelevance. In *Scientific Reports, vol. 4, April, 2014.*

[3] G. Spencer. Clustered Networks Protect Cooperation Against Catastrophic Collapse. Accepted at *Network Science*.
[4] S. Suri, and D.J. Watts. Cooperation and Contagion in Web-based, Networked Public Goods Experiments. In *PLoS ONE*, *vol. 6, num. 3, 2011*.