
MATH 255 Graph Theory Spring ’18 Lab 4

Max Cut: Random and Greedy Partitions

Pair Names:

At this point you are familiar with several problems related to finding small sets of edges or nodes
whose removal disconnects a graph (small node cuts, or small edge cuts).

Graph theorists have also studied the problem of finding “large edge cuts” in graphs.

1 The Maximum Cut Problem

Maximum Cut Problem: Given input graph G = (V,E) ,
Find a Partition of the nodes of G into two disjoint subsets V1 and V2 (with V1 ∪ V2 = V)
so that the number of edges across the cut is maximized.

**An edge “crosses the cut” if it has one endpoint in V1 and one endpoint in V2 .
**Say that an edge e is “cut” by a partition if it if e crosses the cut.

For example, find the largest cut in the graph you worked with from Lab 3:

1

2

3

4

5

6

7

8

Which nodes will you put in V1 ? V2 ? Cut as many edges as possible!

How many edges are in the cut implied by your partition?

1

Is the best solution unique?
Is there a different partition just as good as the one you found?

Warm up by doing another example:

9

1

2

3

4
5

6

7

8

Which nodes will you put in V1 ? V2 ? Cut as many edges as possible!

How many edges are in the cut implied by your partition?

Is the best solution unique?
Is there a different partition just as good as the one you found?

2 A Mystery Graph

Download the file mysterygraph.m from Moodle.

Running this file will create an adjacency matrix for a 200-node graph G .
This function has no inputs, but gives the adjacency matrix as output.
You will explore this graph for the remainder of the lab.

To get started:

• Compute the average degree of G :

• Compute the total number of edges in G :

• Print a histogram of the degrees in G .

2

3 Counting Edges Across a Cut

Now you will build a function that takes as input an adjacency matrix A, and two vectors V1 and
V2.

V1 will be a vector of length 200 that contains a 1 to indicate that a node is in V1 and a 0 otherwise.
V2 is similar. There are other ways you could encode the members of V1 and V2 , but this choice
will make writing the function much easier.

Note: In your partition every node of V is in either V1 or V2 , so notice that V1(i)+V2(i) should
be 1 for all i.

Carefully comment on what the following lines of code are doing:

function[edgesacross]=countcut(A, V1, V2)

edgesacross=0;
for i=1:200

for j=1:200
if ((i>j)&& not(V1(i)==V1(j))&& A(i,j)==1)

edgesacross=edgesacross+1;
end

end
end

So far your function isn’t using V2, but this input may be useful to have around later.

First tests:

• Create inputs for a partition in which V1 contains nodes {1, 2, 3} and V2 contains nodes all
other nodes. Using the countcut function, how many edges of the mystery graph are cut?

What does you answer mean in terms of G ?

Sample code: V1=[ones(3,1); zeros(197,1)];

• Create inputs for a partition in which V1 contains nodes {1, 2, 3, ..., 100} and V2 contains
nodes {101, 102, 103, ..., 200} . Using the countcut function, how many edges of the mys-
tery graph are cut?

Are you surprised by the change from the previous part?

3

4 A Random Partition

To find a partition that cuts a lot of edges, one thing you could try is guessing randomly.
(I know this doesn’t seem terribly smart...)

Create a script that randomly flips a fair coin for each node
to decide whether it should be in V1 or V2 ,
and then runs countcut to find how many edges got cut.

Attach your code with comments about what each line does.

Run your script a couple of times until you feel confident that it is counting the correct quantity.

Now conduct 10 trials:

Sample Number of Edges Cut
1
2
3
4
5
6
7
8
9
10
Avg. Num. Edges Cut:

Write 3-4 sentences interpreting your results in terms of the mystery graph G .

4

5 Local Improvement of a Random Partition

Here is a slightly smarter idea:

1. Start by guessing a partition randomly a few times,
2. Take a moderately well-performing guess of V1 and V2 we observe,
3. Consider whether switching any single node to the other Vi increases the count of cut edges.
(If we find a node in V1 where switching it to V2 makes a big improvement, we’ll switch it, etc).

The idea is to make a small-scale local improvement
to a random partition that is already pretty good.

Write a function that takes in A, V1, V2, and reports back on which single node being switched
will give the largest improvement. For every node in V1 your code should try out switching it to
V2 and check how much the number of cut edges increased. Similarly, for every node in V2 your
code should try out switching it to V1 and check how much the number of cut edges increased.
Whichever single node switch gives the largest increase in the number of edges cut should be re-
ported as output.

Here are some ideas to get you started:

function[bestnodetoswitch]=localimprove(A, V1, V2)

bestnodetoswitch=0;
biggestimprove=0;

TrialV1=V1;
TrialV2=V2;

Currentcutsize=countcut(A, V1, V2)

for node=1:200
if (V1(node)==1)

TrialV1(node)=0;
TrialV2(node)=1;
TrialEdgescut= countcut(A,TrialV1,TrialV2);
if ((TrialEdgescut-Currentcutsize)>biggestimprove)

bestnodetoswitch=node;
.............etc.....

Attach your code with comments about what each line does.

5

Now that you have a local improvement method,

1. Run your random guessing code until you get a partition to start from that is at least as good
as the average you found in Section 4.

2. Run your local improvement method 10 times:
After each time, switch the best node to switch as reported by the method, and report the
current number of edges cut. Then run the local improvement method on the new partition
to gain further improvements.

Partition Current Num. Edges Cut best node to switch
A good guess
1 local improvement
2 local improvements
3 local improvements
4 local improvements
5 local improvements
6 local improvements
7 local improvements
8 local improvements
9 local improvements
10 local improvements stop!

Write 2-3 sentences interpreting your results.

6

6 A Greedy Partition

Last, we’ll do something that sounds pretty smart.

1. Start from V1 and V2 empty.
2. Starting from node 1, for each node x ,
greedily choose which of V1 and V2 x should be added to.
For each node, based on V1 and V2 so far, place x in the Vi that results in more edges crossing the cut.
3. Once all nodes have been assigned to V1 or V2 , check how many edges cross the cut.

Create code that takes A as input and creates a greedy partition as described.

As you evaluate whether it is better to add a node x to V1 or V2 is likely that you’ll want to
consider how many edges are cut in some subgraph of G , composed of some initial run of nodes,
e.g. {1, 2, 3, 4, 5} .

Try out the command B=A(1:5,1:5)

Print your code with comments about what each few lines is doing.

Write 2-3 sentences about how your Greedy Strategy performs (how many edges it cut) in com-
parison to your earlier random guessing and locally-improved random guess.

Finally, can you can make some local improvements
to the greedy strategy produced by your algorithm?

Partition Current Num. Edges Cut best node to switch
Greedy Strategy
1 local improvement
2 local improvements
3 local improvements that’s enough...

7

7 Reflection

Please write 3 short thoughts, ideas, or reflections
about this family of strategies to find a large cut.

What did you find most surprising? Do you have any conjectures? Other smart ways to find a large cut?

8

