1. Given numerical objects named \(x \) and \(y \), calculate this quantity (which is of no special interest):
\[
\sqrt{\frac{x^2}{y}}
\]
\[
sqrt(x^2/y)
\]

2. Load the `mosaic` package, read in a data set named `CPS85`, and assign it to an object called `people`.

```r
require(mosaic)
data(CPS85)
people <- CPS85
```

3. Display the first few rows of the `people` data frame.

```r
head(people)
```

4. Display a quick glance at the data frame.

```r
glimpse(people)
```

5. Calculate (not count by hand!) the number of cases in the data frame.

```r
nrow(people)
```

6. Calculate the mean wage of all people.

```r
mean(~wage, data = people)
```

7. Calculate the standard deviation of wage for all people.

```r
sd(~wage, data = people)
```

8. Compute the five number summary of all wages with a single command.

```r
favstats(~wage, data = people)
```

9. Calculate the mean wage separately for married and unmarried people.

```r
mean(wage ~ married, data = people)
```

10. Create a new variable, `fraction`, in the data frame that holds the ratio of the person’s “experience” to their age.

```r
people <- mutate(people, fraction = exper/age)
```
11. Make a box plot of the people’s wage, broken down by marital status.

```r
qplot(x = married, y = wage, data = people, geom = "boxplot")
```

12. Make a scatterplot of people’s wages as a function of age, separated by marital status:

```r
qplot(x = age, y = wage, color = married, data = people)
```

13. Calculate (not count by hand!) the number of people by marital status.

```r
tally(~married, data = people)
```

14. Calculate (not count by hand!) the number of people by marital status and sex simultaneously.

```r
tally(married ~ sex, data = people)
```