Agenda

1. ANOVA
2. Multiple Testing

ANOVA We just developed a way to compare differences in means between two groups. But what if we have more than two groups? Analysis of Variance (ANOVA) provides a mechanism for simultaneously assessing the differences between multiple groups.

The HELP study was a clinical trial for adult inpatients recruited from a detoxification unit. Patients with no primary care physician were randomized to receive a multidisciplinary assessment and a brief motivational intervention or usual care, with the goal of linking them to primary medical care. We'll consider two variables:

- cesd: Center for Epidemiologic Studies Depression measure at baseline (high scores indicate more depressive symptoms)
- substance: primary substance of abuse: alcohol, cocaine, or heroin

Are there important differences in the depression scores among patients depending on their drug of abuse?

```
require(mosaic)
favstats(cesd ~ substance, data = HELPrct)
## substance min Q1 median Q3 max mean sd n missing
## 1 alcohol 4 26 36 42 58 34.37288 12.05041 177 0
## 2 cocaine 1 19 30 39 60 29.42105 13.39740 152 0
## 3 heroin 4 28 35 43 56 34.87097 11.19812 124 0
qplot(y = cesd, x = substance, data = HELPrct, geom = "boxplot")
anova(aov(cesd ~ substance, data = HELPrct))
## Analysis of Variance Table
##
## Response: cesd
## Df Sum Sq Mean Sq F value Pr(>F)
## substance 2 2704 1352.1 8.9363 0.0001563 ***
## Residuals 450 68084 151.3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

1. Write down the null and alternative hypotheses
2. Check the conditions for ANOVA: is independence reasonable? Is normality reasonable? What about equal variance?
3. Find the value of the test statistic (F) in the ANOVA table. Can you derive it from the other numbers in the table?
4. Draw a picture of the sampling distribution of F. How many degrees of freedom do we have?
5. Find the p-value. [You will need the function pf ().]
6. What do you conclude? Write a sentence summarizing your findings.

In-Class Problem: 4.37 Chicken diet and weight

Multiple Testing Why is this comic funny?: http://xkcd.com/882/
The simplest (and most conservative) way to correct for multiple testing is to use Bonferroni's correction: simply divide the α-level by the number of comparisons that you are making.

