1 Introduction

This document is intended to help describe how to undertake analyses introduced as examples in the Third Edition of the *Statistical Sleuth* (2013) by Fred Ramsey and Dan Schafer. More information about the book can be found at http://www.proaxis.com/~panorama/home.htm. This file as well as the associated knitr reproducible analysis source file can be found at http://www.math.smith.edu/~nhorton/sleuth3.

This work leverages initiatives undertaken by Project MOSAIC (http://www.mosaic-web.org), an NSF-funded effort to improve the teaching of statistics, calculus, science and computing in the undergraduate curriculum. In particular, we utilize the mosaic package, which was written to simplify the use of R for introductory statistics courses. A short summary of the R needed to teach introductory statistics can be found in the mosaic package vignette (http://cran.r-project.org/web/packages/mosaic/vignettes/MinimalR.pdf).

Department of Mathematics and Statistics, Smith College, nhorton@smith.edu
To use a package within R, it must be installed (one time), and loaded (each session). The package can be installed using the following command:

```r
> install.packages("mosaic") # note the quotation marks
```

Once this is installed, it can be loaded by running the command:

```r
> require(mosaic)
```

This needs to be done once per session.

In addition the data files for the *Sleuth* case studies can be accessed by installing the *Sleuth3* package.

```r
> install.packages("Sleuth3") # note the quotation marks
```

```r
> require(Sleuth3)
```

We also set some options to improve legibility of graphs and output.

```r
> trellis.par.set(theme = col.mosaic()) # get a better color scheme
> options(digits = 3)
```

The specific goal of this document is to demonstrate how to calculate the quantities described in Chapter 5: Comparisons Among Several Samples using R.

2 Diet and lifespan

Does restricting the diet of female mice lead to increased lifespan? This is the question addressed in case study 5.1 in the *Sleuth*.

2.1 Summary statistics and graphical display

We begin by reading the data and summarizing the variables.

```r
> summary(case0501)
```

<table>
<thead>
<tr>
<th></th>
<th>N/N85:57</th>
<th>N/R40:60</th>
<th>N/R50:71</th>
<th>NP :49</th>
<th>R/R50:56</th>
<th>lopro:56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifetime Min.</td>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifetime 1st Qu.</td>
<td>31.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifetime Median</td>
<td>39.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifetime Mean</td>
<td>38.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifetime 3rd Qu.</td>
<td>46.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>54.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```r
> favstats(Lifetime ~ Diet, data = case0501)
```
There were a total of 349 female mice. These mice were randomly assigned to one of 6 diets. Their lifetimes were then recorded, as shown in Display 5.2 (page 115 of the Sleuth).

\[
\begin{array}{cccccccc}
\text{min} & Q1 & \text{median} & Q3 & \text{max} & \text{mean} & \text{sd} & n & \text{missing} \\
N/N85 & 17.9 & 31.40 & 33.10 & 36.40 & 42.3 & 32.69 & 5.125 & 57 & 0 \\
N/R40 & 19.6 & 42.27 & 46.05 & 50.35 & 54.6 & 45.12 & 6.703 & 60 & 0 \\
N/R50 & 18.6 & 37.95 & 43.90 & 48.20 & 51.9 & 42.30 & 7.768 & 71 & 0 \\
NP & 6.4 & 24.80 & 28.90 & 31.40 & 35.5 & 27.40 & 6.134 & 49 & 0 \\
R/R50 & 24.2 & 39.15 & 43.95 & 48.35 & 50.7 & 42.89 & 6.683 & 56 & 0 \\
lopro & 23.4 & 35.00 & 41.05 & 46.45 & 49.7 & 39.69 & 6.992 & 56 & 0 \\
\end{array}
\]

\[
> \text{bwplot}(\text{Lifetime} \sim \text{Diet}, \text{data} = \text{case0501}) \quad \# \text{Display 5.1}
\]

\[
> \text{densityplot}(\sim \text{Lifetime}, \text{groups} = \text{Diet}, \text{auto.key} = \text{TRUE}, \text{data} = \text{case0501})
\]
2.2 One-way ANOVA

First we fit the one way analysis of variance (ANOVA) model, using all of the groups.

```r
> anova(lm(Lifetime ~ Diet, data = case0501))
```

Analysis of Variance Table

<table>
<thead>
<tr>
<th>Response: Lifetime</th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diet</td>
<td>5</td>
<td>12734</td>
<td>2547</td>
<td>57.1</td>
<td><2e-16 ***</td>
</tr>
<tr>
<td>Residuals</td>
<td>343</td>
<td>15297</td>
<td>45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

There is a strong statistically significant difference between the diets.

By default, the use of the linear model (regression) function displays the pairwise differences between the first group and each of the other groups. Note that the overall test of the model is the same.

```r
> summary(lm(Lifetime ~ Diet, data = case0501))
```

Call:
`lm(formula = Lifetime ~ Diet, data = case0501)`

Residuals:

<table>
<thead>
<tr>
<th>Min</th>
<th>1Q</th>
<th>Median</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>-25.517</td>
<td>-3.386</td>
<td>0.814</td>
<td>5.183</td>
<td>10.014</td>
</tr>
</tbody>
</table>

Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|---------|
| (Intercept) | 32.691 | 0.885 | 36.96 | < 2e-16 *** |
| DietN/R40 | 12.425 | 1.235 | 10.06 | < 2e-16 *** |
| DietN/R50 | 9.606 | 1.188 | 8.09 | 1.1e-14 *** |
| DietNP | -5.289 | 1.301 | -4.07 | 5.9e-05 *** |
| DietR/R50 | 10.194 | 1.257 | 8.11 | 8.9e-15 *** |
| Dietlopro | 6.994 | 1.257 | 5.57 | 5.2e-08 *** |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.68 on 343 degrees of freedom
Multiple R-squared: 0.454, Adjusted R-squared: 0.446
F-statistic: 57.1 on 5 and 343 DF, p-value: <2e-16

The reference group is NP, followed by N/N85, lopro, N/R50, R/R50, N/R40.
2.3 Pairwise comparisons

Next we used contrasts for the results on page 122, Display 5.7, and part (a) on page 115:

```r
> require(gmodels)

Loading required package: gmodels

> # N/N85 vs N/R50
> fit.contrast(lm(Lifetime ~ Diet, data = case0501), "Diet", c(-1, 0, 1, 0, 0, + 0), conf.int = 0.95)

                        Estimate Std. Error t value  Pr(>|t|) lower CI upper CI
Diet c=( -1 0 1 0 0 0 )  9.606     1.188   8.088  1.057e-14     7.27 11.94
```

The results for (b) on page 115-116:

```r
> # N/R50 vs R/R50 (b)
> fit.contrast(lm(Lifetime ~ Diet, data = case0501), "Diet", c(0, 0, -1, 0, 1, + 0), conf.int = 0.95)

                        Estimate Std. Error t value  Pr(>|t|) lower CI upper CI
Diet c=( 0 0 -1 0 1 0 )  0.5885     1.194  0.4931  0.6223 -1.759  2.936
```

The results for (c) on page 116:

```r
> # N/R40 vs N/R50 (c)
> fit.contrast(lm(Lifetime ~ Diet, data = case0501), "Diet", c(0, -1, 1, 0, 0, + 0), conf.int = 0.95)

                        Estimate Std. Error t value  Pr(>|t|) lower CI upper CI
Diet c=( 0 -1 1 0 0 0 )  2.819      1.171 -2.408  0.01659 -5.123  0.516
```

```r
> # N/N85 vs N/R40
> fit.contrast(lm(Lifetime ~ Diet, data = case0501), "Diet", c(-1, 1, 0, 0, 0, + 0), conf.int = 0.95)

                        Estimate Std. Error t value  Pr(>|t|) lower CI upper CI
Diet c=( -1 1 0 0 0 0 ) 12.433     1.235 10.060  4.964e-21  9.996 14.85
```
The results for (d) on page 116:

```
> # N/R50 vs N/R50 lopro (d)
> fit.contrast(lm(Lifetime ~ Diet, data = case0501), "Diet", c(0, 0, -1, 0, 0, + 1), conf.int = 0.95)
```

| | Estimate | Std. Error | t value | Pr(>|t|) | lower CI | upper CI |
|-------|----------|------------|---------|----------|----------|----------|
| Diet | -2.611 | 1.194 | -2.188 | 0.02935 | -4.959 | -0.2639 |

The results for (e) on page 116:

```
> # N/N85 vs NP (e)
> fit.contrast(lm(Lifetime ~ Diet, data = case0501), "Diet", c(-1, 0, 0, 1, 0, + 0), conf.int = 0.95)
```

| | Estimate | Std. Error | t value | Pr(>|t|) | lower CI | upper CI |
|-------|----------|------------|---------|----------|----------|----------|
| Diet | -5.289 | 1.301 | -4.065 | 5.949e-05| -7.848 | -2.73 |

Another way of viewing these results is through a model table, which displays the differences between the grand mean and the group means.

```
> model.tables(aov(lm(Lifetime ~ Diet, data = case0501)))
```

Tables of effects

<table>
<thead>
<tr>
<th>Diet</th>
<th>N/N85</th>
<th>N/R40</th>
<th>N/R50</th>
<th>NP</th>
<th>R/R50</th>
<th>lopro</th>
</tr>
</thead>
<tbody>
<tr>
<td>rep</td>
<td>57.000</td>
<td>60.000</td>
<td>71.0</td>
<td>49.0</td>
<td>56.000</td>
<td>56.0000</td>
</tr>
</tbody>
</table>

Another way of calculating the above results is done with the following code:

```
> mean(Lifetime ~ Diet, data = case0501) - mean(~Lifetime, data = case0501)
```

<table>
<thead>
<tr>
<th>Diet</th>
<th>N/N85</th>
<th>N/R40</th>
<th>N/R50</th>
<th>NP</th>
<th>R/R50</th>
<th>lopro</th>
</tr>
</thead>
<tbody>
<tr>
<td>rep</td>
<td>-6.1059</td>
<td>6.3195</td>
<td>3.5000</td>
<td>-11.3951</td>
<td>4.0886</td>
<td>0.8886</td>
</tr>
</tbody>
</table>

2.4 Other analyses

We will next demonstrate how to calculate the quantities on 121 (Display 5.6).
> df = length(case0501$Diet) - length(unique(case0501$Diet))
> df
[1] 343

> sdvals = with(case0501, tapply(Lifetime, Diet, sd))
> sdvals

N/N85 N/R40 N/R50 NP R/R50 lopro

> nvals = with(case0501, tapply(Lifetime, Diet, length))
> nvals

N/N85 N/R40 N/R50 NP R/R50 lopro
57 60 71 49 56 56

> pooledsd = sum(sdvals * nvals)/sum(nvals)
> pooledsd

[1] 6.625

Note that the pooled standard deviation reported in chapter 5 is not the same as the root MSE from the ANOVA. For the rest of this document we will use the ANOVA estimate of the root mean squared error.

2.5 Residual analysis and diagnostics

The residuals versus fitted graph does not demonstrate dramatic lack of fit (though some of the mice had very small residuals). The following figure is akin to Display 5.14 (page 132).

> aov1 = aov(lm(Lifetime ~ Diet, data = case0501))
> plot(aov1, which = 1)
3 Spock Conspiracy Trial

Did Dr. Benjamin Spock have a fair trial? More specifically, were women underrepresented on his jury pool? This is the question considered in case study 5.2 in the *Sleuth*.

The quantile plot of the residuals indicates that the normality assumption may be violated.

```r
> plot(aov1, which = 2)
> plot(aov1, which = 3)
```
3.1 Summary statistics and graphical display

We begin by reading the data and summarizing the variables.

```r
> case0502 = transform(case0502, Judge = factor(Judge, levels = c("Spock's", "A", "B", "C", "D", "E", "F")))
> summary(case0502)

Percent Judge
Min. : 6.4 Spock's: 9
1st Qu.:19.9 A : 5
Median :27.5 B : 6
Mean :26.6 C : 9
3rd Qu.:32.4 D : 2
Max. :48.9 E : 6
  F : 9

> case0502$Judge = with(case0502, as.factor(Judge))
> favstats(Percent ~ Judge, data = case0502)

  min Q1 median Q3 max mean   sd n missing
Spock's 6.4 13.30 15.00 17.70 23.1 14.62 5.039 9     0
A 16.8 30.80 33.60 40.50 48.9 34.12 11.942 5     0
B 27.0 29.67 32.35 34.80 45.6 33.62 6.582 6     0
C 21.0 27.50 30.50 32.50 33.8 29.10 4.593 9     0
D 24.3 25.65 27.00 28.35 29.7 27.00 3.818 2     0
E 17.7 20.15 24.70 33.07 40.2 26.97 9.010 6     0
F 16.5 23.50 26.70 29.80 36.2 26.80 5.969 9     0
```

There were a total of 46 venires. They compared Spock’s judge with 6 other judges. The percent of women within each venire was recorded as shown in Display 5.4 (page 117 of the Sleuth).

```r
> bwplot(Percent ~ Judge, data = case0502) # Display 5.5 (page 118)
```

![Box plot of Percent by Judge](attachment:image.png)
3.2 One-way ANOVA

First we fit the one way analysis of variance (ANOVA) model, with all of the groups. These results are summarized on page 118 and shown in Display 5.10 (page 127).

```r
> aov1 = anova(lm(Percent ~ Judge, data = case0502))
> aov1

Analysis of Variance Table

Response: Percent

                        Df  Sum Sq Mean Sq F value Pr(>F)
Judge                  6 1927.00 321.17 6.7242 6.1e-05 ***
Residuals             39 1864.00   48.42  
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

By default, the use of the linear model (regression) function displays the pairwise differences between the first group and each of the other groups. Note that the overall test of the model is the same.

```r
> summary(lm(Percent ~ Judge, data = case0502))

Call:
lm(formula = Percent ~ Judge, data = case0502)
```
Residuals:

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>1Q</th>
<th>Median</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>-17.32</td>
<td>-4.37</td>
<td>-0.25</td>
<td>3.32</td>
<td>14.78</td>
</tr>
</tbody>
</table>

Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|---------|
| Intercept | 14.62 | 2.30 | 6.34 | 1.7e-07 *** |
| JudgeA | 19.50 | 3.86 | 5.06 | 1.1e-05 *** |
| JudgeB | 18.99 | 3.64 | 5.21 | 6.4e-06 *** |
| JudgeC | 14.48 | 3.26 | 4.44 | 7.2e-05 *** |
| JudgeD | 12.38 | 5.41 | 2.29 | 0.0275 * |
| JudgeE | 12.34 | 3.64 | 3.39 | 0.0016 ** |
| JudgeF | 12.18 | 3.26 | 3.74 | 0.0006 *** |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.91 on 39 degrees of freedom
Multiple R-squared: 0.508, Adjusted R-squared: 0.433
F-statistic: 6.72 on 6 and 39 DF, p-value: 6.1e-05

> model.tables(aov(lm(Percent ~ Judge, data = case0502)))

Tables of effects

<table>
<thead>
<tr>
<th>Judge</th>
<th>Spock’s</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>-11.96</td>
<td>7.537</td>
<td>7.034</td>
<td>2.517</td>
<td>0.4174</td>
<td>0.3841</td>
<td>0.2174</td>
</tr>
<tr>
<td>rep</td>
<td>9.00</td>
<td>5.000</td>
<td>6.000</td>
<td>9.000</td>
<td>2.0000</td>
<td>6.0000</td>
<td>9.0000</td>
</tr>
</tbody>
</table>

Then we can fit the one way analysis of variance F-test of whether the mean percentage is the same for judges A-F (page 118).

> with(subset(case0502, Judge != "Spock’s"), anova(lm(Percent ~ Judge)))

Analysis of Variance Table

<table>
<thead>
<tr>
<th>Response: Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Df</td>
</tr>
<tr>
<td>Judge</td>
</tr>
<tr>
<td>Residuals</td>
</tr>
</tbody>
</table>

3.3 Additional analyses

Now we will demonstrate how to fit the reduced model comparing Spock’s judge to a combination of the other judges. First we create a 2 level version of the grouping variable.
> case0502$twoJudge = as.character(case0502$Judge)
> case0502$twoJudge[case0502$Judge != "Spock's"] = "notspock"
> tally(twoJudge ~ Judge, format = "count", data = case0502)

<table>
<thead>
<tr>
<th>Judge</th>
<th>twoJudge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spock's</td>
<td>A B C D E F</td>
</tr>
<tr>
<td>notspock</td>
<td>0 5 6 9 2 6 9</td>
</tr>
<tr>
<td>Total</td>
<td>9 5 6 9 2 6 9</td>
</tr>
</tbody>
</table>

Recall that the book calculates the extra sum of squares as
\[
\frac{(2190.90 - 1864.45)/(44-39))}{(1864.45 / 39)} = 1.37, \text{ with df } 5 \text{ and } 39. \ P(F > 1.366) = 0.26 \text{ (page 130). Below are the calculations for the results found on page 128.}

> numdf1 = aov1["Residuals", "Df"]
> numdf1 # Within

[1] 39

> ss1 = aov1["Residuals", "Sum Sq"]
> ss1 # Within

[1] 1864

> aov2 = anova(lm(Percent ~ as.factor(twoJudge), data = case0502))
> aov2

Analysis of Variance Table

Response: Percent

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>as.factor(twoJudge)</td>
<td>1</td>
<td>1601</td>
<td>1601</td>
<td>32.1</td>
<td>1e-06 ***</td>
</tr>
<tr>
<td>Residuals</td>
<td>44</td>
<td>2191</td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> df2 = aov2["Residuals", "Df"]
> df2 # Spock and others

[1] 44

> ss2 = aov2["Residuals", "Sum Sq"]
> ss2 # Spock and others

[1] 2191

> Fstat = ((ss2 - ss1)/(df2 - numdf1))/(ss1/numdf1)
> Fstat
We can also compare the two models using ANOVA (Display 5.12, page 130).

```r
> anova(lm(Percent ~ as.factor(Judge), data = case0502), lm(Percent ~ as.factor(twoJudge),
+     data = case0502))

Analysis of Variance Table

Model 1: Percent ~ as.factor(Judge)
Model 2: Percent ~ as.factor(twoJudge)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 39 1864
2 44 2191 -5 -326 1.37 0.26
```

There are some other ways to compare whether the other judges differ from Dr. Spock’s judge in their female composition using contrasts.

```r
> # test all of the other judges vs. Spock's judge using a contrast page 118
> fit.contrast(lm(Percent ~ Judge, data = case0502), "Judge", c(-6, 1, 1, 1, 1,
+     1, 1), conf.int = 0.95)

      Estimate Std. Error t value Pr(>|t|) lower CI upper CI
 Judge c=(-6 1 1 1 1 1 1) 89.87 15.85 5.67 1.489e-06 57.81 121.9

> # calculate the 95% confidence interval for Dr. Spock's jury female
> # composition page 118
> estimable(lm(Percent ~ Judge, data = case0502), c(1, 0, 0, 0, 0, 0, 0), conf.int = 0.95)

      Estimate Std. Error t value DF Pr(>|t|) Lower.CI Upper.CI
(1 0 0 0 0 0 0) 14.62 2.305 6.344 39 1.722e-07 9.96 19.28
```

3.3.1 Kruskal-Wallis Nonparametric Analysis of Variance

For the results of the Kruskal-Wallis test on page 136 we can use the following code:

```r
> kruskal.test(Percent ~ Judge, data = case0502)
```
Kruskal-Wallis rank sum test

data: Percent by Judge
Kruskal-Wallis chi-squared = 21.96, df = 6, p-value = 0.001229