A DYNAMICAL SYSTEM FOR PLANT PATTERN FORMATION

Pau Atela (Smith College)
Christophe Golé (Smith College)
Scott Hotton (Miami University)

Phyllotaxis (Greek: phylon=leaf, taxis $=$ order)

Botanical elements are commonly arranged so that:

- They form two families of spirals whose numbers are successors in the Fibonacci sequence:

$$
1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

- The "divergence" angle between two chronologically successive element tends to $360^{\circ} / \tau=222.48^{\circ}$... where $\tau=\frac{1+\sqrt{5}}{2}$ is the Golden Mean.

Goals for our Models

- to reproduce and explain important features of botanical patterns
- to allow a thorough mathematical (and not only numerical) analysis
- to make predictions about phenomena either ignored or ill understood by botanists
- to be robust under perturbations and lend themselves to "upgrades"
- compatibility with some of the current biochemical or biomechanical models
- beauty and simplicity

Primordia Formation at the Apex of a Plant

Hofmeister's Hypotheses
(see also Snow \& Snow)

- Primordia form periodically
- Once formed, they move radially away from the apex
- The new primordium forms where the older ones left it "most space"

Quick Review of Dynamical Systems

A discrete dynamical system is a map from a "phase" space S to itself. The goal is to study the qualitatively different trajectories of points of S under iteration of f.

Ex: If $S=\mathbf{R}$ and $f(x)=x^{2}$, then the trajectory of the point 2 under f is $2,4,16,256$ etc. The trajectory of 1 is $1,1,1 \ldots$ etc. The point 1 is a fixed point for f.

The fixed point 1 is unstable: trajectories of nearby points move away from it. On the other hand, the fixed point 0 is stable. This is due to the fact that $f^{\prime}(1)=2>1$, whereas $f^{\prime}(0)=0<1$.

The Phase Space

The configurations are made of primordia laying on a family of concentric circles C_{k} of radii $r_{k}=(G)^{k}$. There is one primordium z_{k} on each circle $C_{k} . \quad G=r_{k+1} / r_{k}$ is the growth (Plastochrone) ratio.

Note: This is the centric representation. Statements are valid for the cylindrical representation as well.

- The angle θ_{k} through the origin between particles z_{k} and z_{k+1} is the $k^{t h}$ divergence angle.
- Configurations are parameterized by $\left(\theta_{0}, \ldots, \theta_{N}\right)$: the phase space is the torus T^{N+1}.

The Dynamical System

At each iterate, each primordium z_{k} moves radially, one circle up to Z_{k+1}.

A new primordium Z_{0} is born on the central circle in the least crowded place. Mathematically, Z_{0} goes to the minimum of a repulsive potential energy.

We get a torus map $F\left(\theta_{0}, \ldots, \theta_{N}\right)=\left(\Theta_{0}, \ldots, \Theta_{N}\right)$ of the form:

$$
\begin{array}{ccc}
\Theta_{0} & = & f\left(\theta_{0}, \ldots, \theta_{N}\right) \\
\Theta_{1} & = & \theta_{0} \\
& \vdots & \\
\Theta_{N} & = & \theta_{N-1}
\end{array}
$$

where $f\left(\theta_{0}, \ldots, \theta_{N}\right)$ gives the location on the central circle which minimizes the repulsive potential energy from the "old" primordia.

Note: F is really a one parameter family of Dynamical Systems, with parameter G.

- The potential energy is of the form: $W(\Theta)=\sum_{k=0}^{N} U\left(\left\|Z_{k}-e^{i \Theta}\right\|\right), \quad U(d)=d^{-s}$
(or any similarly shaped potential U).
- The following simpler potential energy gives the same qualitative features:

$$
X(\Theta)=\sup _{k \in\{1, \ldots, N\}} U\left(\left\|Z_{k}-e^{i \Theta}\right\|\right)
$$

Results

- The fixed points of F are regular spirals, i.e.

$$
\theta_{0}=\ldots=\theta_{N} .
$$

- All fixed points are (asymptotically) stable.
- The set of fixed points is completely described by the bifurcation diagram which, when G decreases slowly, explains the occurrence of Fibonacci spiral patterns.
- We can prove the existence of many stable periodic orbits.

Stability and Structural Stability

- F is a contraction in a large open set containing all the fixed points.

The spectrum of the differential of F is in the unit disk, strictly so in a region containing all fixed points. Note: The map F is only defined on an open subset (of full measure) of \mathbf{T}^{N+1}, but it is smooth where defined.

- Qualitatively, using the potential W gives the same fixed points behavior as using X.

The bifurcation diagram of W is uniformly close in the hyperbolic metric to that of X.

To Build the Bifurcation Diagram

(Locus of fixed points)

With the X potential energy, the local minima occur at points $e^{i \Theta}$ on the central circle where the two closest primordia to $e^{i \Theta}$ are equidistant:

The local minima of $X(\Theta)=\sup _{k \in\{1, \ldots, N\}} U\left(\left\|Z_{k}-e^{i \Theta}\right\|\right)$ occur at the maxima of $\inf _{k}\left\|Z_{k}-e^{i \Theta}\right\|^{2}$, represented here. At such a point, two primordia (Z_{k} and Z_{j} here) must be equidistant to $e^{i \Theta}$, and on opposite sides of it.

Periodic Orbits

We also find periodic orbits, that is configurations whose sequence of divergence angles is periodic. Botanists observed on Michelia: $134^{\circ}, 94^{\circ}, 83^{\circ}, 138^{\circ}, 92^{\circ}, 86^{\circ}, 136^{\circ}, 310^{\circ}, 134^{\circ}, \ldots$ We find:

```
130
```

Questions: Is the phase space filled with basins of attraction of periodic orbits? Is there chaos in this system?

The Phyllotaxis Project At Smith College www.math.smith.edu/~phyllo

Differential $D F$ of F

$$
\left(\begin{array}{cccccccccc}
0 & \ldots & \ldots & 0 & a & \ldots & 1-a & 0 & \ldots & 0 \\
1 & 0 & \ldots & \cdots & \ldots & \ldots & \cdots & \cdots & \ldots & 0 \\
0 & 1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \ldots & 0 \\
0 & 0 & 1 & 0 & \ldots & \cdots & \cdots & \cdots & \cdots & 0 \\
& & \ddots & \ddots & \ddots & & & & & \\
& & & \ddots & \ddots & \ddots & & & & \ddots \\
& & & & & \ddots & \ddots & \ddots & & \\
& & & & & & \ddots & \ddots & \ddots & \\
& & & & & & & 0 & 1 & 0
\end{array}\right)
$$

for $a \in] 0,1[$ (This is in the absolute angles coordinate system). We can prove that for fixed points, m and n are coprime, which makes the matrix acyclic and, by the Perron-Fröbenius theory, all its eigenvalues strictly inside the unit disk, except for one simple eigenvalue 1 , which is discarded by symmetry.

Primordia Formation at the Apex of a Plant

Hofmeister's Snow \& Snow's Hypotheses

- Ptaraly (not necessarily)
- Once formed, they move radially away from the apex
- The new primordium forms when and where the older ones left it enough space.
(This allows both spiral and whorled patterns) Back

