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CARTAN CALCULUS IN DE RHAM THEORY

Let M be a manifold.

- The operators d, vx, and Lx are graded derivations of

Q(M).
- They satisfy the following graded commutation relations:
[d,d] = 2d* =0, [d, Lx] =0,
(tx,d] = Lx, [Lx,Ly] = Lix,y]s
[tx,ty] =0, [Lx,y] = vxy)-

- Using these relations, can derive the Cartan formula

dw(Xo, ..., Xx) = ZH)Z’X-( (X1,.7., X))

+3 ()X, X5], X, 00 Xk
1<j
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- The Cartan formula explicitly connects the differential
structure of Q(M) to the Lie structure of X(M).

- This relationship holds more generally for Lie algebroids.
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COURANT ALGEBROIDS

Definition

A Courant algebroid is a vector bundle E — M equipped
with a nondegenerate symmetric pairing (-, -), a bundle map
p: E — TM,and a bracket [-, -] such that

1. [le1, e2], es] = [e1, [e2, es]] — [e2, [e, €3]],
2. [ex, fea] = p(er)(f)ea + fle1,e2l,

3. ple1)(e2,es) = ([e1, e2], €3) + (e, [e1, e3]),
4., [[61,62]] 4F [[€Q,€1ﬂ = D<€1,€2>,

where D : C*(M) — T'(E) is given by (Df,e) = p(e)(f).
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Definition

A Courant algebroid is a vector bundle E — M equipped
with a nondegenerate symmetric pairing (-, -), a bundle map
p: E — TM,and a bracket [-, -] such that

1. [[e1, e2], es] = [ex, [e2, es]] — [e2, [e1, es]],
2. [ex, fea] = pler)(f)ez + flex, e,

3. ple1){ez, e3) = ([e1, e2], e3) + (e, [e1, e3]),
4. [e1,ea] + [e2,e1] = Dle,eq),

where D : C*(M) — T'(E) is given by (Df,e) = p(e)(f).
- Examples: TM & T*M, quadratic Lie algebras

- Motivations: Dirac constraints, generalized geometry, 3d
AKSZ theory,... 3
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COURANT COHOMOLOGY

Theorem (Severa, Roytenberg)
Courant algebroids are in one-to-one correspondence with
degree 2 symplectic dg-manifolds.

In particular, there is a cohomology theory associated to
Courant algebroids.

- For g, the complex is A g* (Chevalley-Eilenberg complex).
- For TM @ T*M, the complex is Q(T*[1]M).

For general Courant algebroids, there is an explicit description
in low degrees:

M) B T(E) S ONE) - - -
but in general the known descriptions were suboptimal (local
coords, connection, etc.).
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THE KELLER-WALDMANN ALGEBRA

Given a vector bundle E — M with nondegenerate pairing,
define w € C*(E) as a map

w:T(E)x - xT(E) = C®(M)

k
- C*(M)-linear in the last entry

- For k > 2, there exists a map

0 : D(E) x - x D(E) = X(M)

k—2

such that

(@il o o 0 @y Bl o 0 &) A W@ 0 0 0 il 5 o 0 0 0 Bl

=ou(er, .- 0 er) (€, €ir1)).
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- Degree 0: C*°(M)
- Degree 1: T'(E*) =T'(E)
- Degree 2: For w € C2(E), define @ : I'(E) — I'(E) by

(w(e),e) = w(e,e).

- Well-defined since w is C°°(M)-linear in last entry,

" (@(e),€') = ouw((e,€)) — (@(€), e),

* w(fe) = ou(f)e+ fwle).

- Degree 3: For w € C3(E), define & : I'(E) x I'(E) — ['(E)
by
(W(e,€), e’y =wle, €, e").

Exercise 1: &(-, -) satisfies 3 of the 4 axioms for a Courant
bracket.
Exercise 2: If E has a Courant structure, then can define a
3-cochain T by T'(e, e, e") = {[e, €], €").
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KELLER-WALDMANN=SEVERA-ROYTENBERG

- Keller and Waldmann showed that C*(E) is a commutative
graded algebra with a degree —2 Poisson bracket.

- They were working in an algebraic setting where the
correspondence with dg-manifolds doesn’t apply.

Theorem (Cueca-M)
In the smooth setting, the Keller-Waldmann algebra is

isomorphic to the algebra of functions on the corresponding
symplectic graded manifold.

Idea: If ¢ is a degree k function, then the corresponding
k-cochain w is given by

w(el,. 5 0 ,ek) = {ek,. o .,{62,{617¢}}...}.
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CARTAN CALCULUS, PART 1

- (Severa, Roytenberg) Courant structures on E — M are in
correspondence with degree 3 functions # such that
{0,6} = 0.

p(e)(f) = {{e, 0}, 1}, [e1, e2] = {{e1,0},e2}.
- Such a function induces a differential dg = {6, -} on the

algebra of functions.
- Fore € T'(E), also have operators ¢, = {e, -} and

Lo ={{e, 0}, }

- These operators satisfy the graded commutation relations
[dE, dg] = 2dj; = 0, (g, Le] =0,
[te; dE] = Le, [Les Ler] = Lieer)s
[Les ter] = L]

but not [te, ter] = 0. 8
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- Can transfer dg, ¢, L. to operators on the
Keller-Waldmann algebra.

- In particular:

(tew)(e1y ... e5-1) = w(e,e1,...,e5-1).

Theorem (Cueca-M)
The differential satisfies the following Cartan formula:

dpw(ep; - - -, ) :Z(_l)ip(ei)( (CTRRRN N S
+Z D w(er, ..., &, .., e el ex)

1<j
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E/-CONNECTIONS

Let E — M be a Courant algebroid.

Definition (Alekseev-Xu)

An E-connection on a vector bundle B — M is a map
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E/-CONNECTIONS

Let E — M be a Courant algebroid.

Definition (Alekseev-Xu)

An E-connection on a vector bundle B — M is a map
V:I'(F) x I'(B) — I'(B) such that

* Ve(fb) = fVeb+ ple)(f)b
© Vb= fVeb

The curvature of an E-connection is defined as usual:
FV(elu 62) = velvEQ - v62v€1 - v[[cl,(jg]]’
Fy is an End(B)-valued 2-cochain.

10
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COVARIANT DERIVATIVES

- Given an E-connection V on B, we can define an operator
Dy on C*(E) ® I'(B):

Dvw(eo, ey €k) = Z(— )iVezw(el, NN ,/6\1', PN ,ek)

+Z Z+1 61,...,%,...,[ei,ej]],...,ek)

1<j

- This gives a correspondence between E-connections V
and operators Dy such that...

Exercise 4: The Bianchi identity Dy Fy = 0 holds.

n



ADJOINT CONNECTION

- Let V be a linear connection on E. Then we can define an
adjoint E-connection V¥ on E by:

Vfleg = [[61, egﬂ + Vp(62)€1 = p*<D¢61, 62>
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ADJOINT CONNECTION

- Let V be a linear connection on E. Then we can define an
adjoint E-connection V¥ on E by:

Vfleg = [[61, egﬂ + @p(@)el = p*<D¢61, 62>
- The adjoint E-connection is compatible with the pairing:

(VeEleg, es) + (e, Vieg,) = p(e1){ea, e3)

- Not flat! But induces a flat E-connection on ker p/ im p*.
* Also: tr(F& ) = 0 when k odd.

12
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MODULAR CLASS

Let E — M be a Courant algebroid, V a flat E-connection on a
line bundle L — M.

- Stienon and Xu defined the modular class of (L, V) via the
naive complex, following same procedure as
Evens-Lu-Weinstein.

- We can now place the construction directly in the
Keller-Waldmann complex.

- There is a canonical flat E-connection VP on A'P E. The
(intrinsic) modular class of E is the modular class of
(/\mp E, vtop).

Proposition (Cueca-M)
The modular class vanishes for all E.

13
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CHERN-WEIL, CHERN-SIMONS

- Given an E-connection V on a vector bundle B, let
chy (V) = tr(Fé) € C?*(E).
- As in the classical theory:
- dpchi(V) =0,
- The cohomology class is independent of the connection.
- Given two E-connections Vg, V1, can produce
Chern-Simons-type transgression forms

csk(Vo, Vi) € CHY(E).
- As in the classical theory,
dgcsk(Vo, Vi) = chg (V1) — chi (Vo)

so if chg (Vo) = chg(V1) = 0, the transgression form is
closed.

14
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INTRINSIC SECONDARY CHARACTERISTIC CLASSES

- Make the following choices on E:

- a linear connection V
- a positive definite metric g

- Get the adjoint connection V¥ and the adjoint of the
adjoint connection VE9.
- When k is 0dd, chy(VF) = chg(VE9) = 0, s0 cs3,(VF, VE9)
is closed.
Theorem (Cueca-M)

The classes [csp(VE, VE9)| € H?*~1(E) are independent of
the choices.

15
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REMARKS

- When you choose V, you also get E-connections VM
and V"™ on TM and T*M. Part of a rep up to homotopy
of FonT*M — FE — TM.

- For Lie algebroids, characteristic class constructions
require reps up to homotopy, but for Courant algebroids
we only need a connection!

- Explanation: the T*M and T'M components “cancel”.



THANKS!

Miquel Cueca and Rajan Amit Mehta, “Courant cohomology,
Cartan calculus, connections, curvature, characteristic classes,”
arXiv:1911.05898
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