Courant cohomology and Cartan calculus

Rajan Mehta

December 12, 2019
Smith College

WARM-UP: DE RHAM THEORY

CARTAN CALCulus in de Rham theory

Let M be a manifold.

- The operators d, ι_{X}, and \mathcal{L}_{X} are graded derivations of $\Omega(M)$.

CARTAN CALCULUS IN DE RHAM THEORY

Let M be a manifold.

- The operators d, ι_{X}, and \mathcal{L}_{X} are graded derivations of $\Omega(M)$.
- They satisfy the following graded commutation relations:

$$
\begin{aligned}
{[d, d] } & =2 d^{2}=0, & {\left[d, \mathcal{L}_{X}\right] } & =0, \\
{\left[\iota_{X}, d\right] } & =\mathcal{L}_{X}, & {\left[\mathcal{L}_{X}, \mathcal{L}_{Y}\right] } & =\mathcal{L}_{[X, Y]}, \\
{\left[\iota_{X}, \iota_{Y}\right] } & =0, & {\left[\mathcal{L}_{X}, \iota_{Y}\right] } & =\iota_{[X, Y]} .
\end{aligned}
$$

CARTAN CALCULUS IN DE RHAM THEORY

Let M be a manifold.

- The operators d, ι_{X}, and \mathcal{L}_{X} are graded derivations of $\Omega(M)$.
- They satisfy the following graded commutation relations:

$$
\begin{aligned}
{[d, d] } & =2 d^{2}=0, & {\left[d, \mathcal{L}_{X}\right] } & =0, \\
{\left[\iota_{X}, d\right] } & =\mathcal{L}_{X}, & {\left[\mathcal{L}_{X}, \mathcal{L}_{Y}\right] } & =\mathcal{L}_{[X, Y]}, \\
{\left[\iota_{X}, \iota_{Y}\right] } & =0, & {\left[\mathcal{L}_{X}, \iota_{Y}\right] } & =\iota_{[X, Y]} .
\end{aligned}
$$

- Using these relations, can derive the Cartan formula

$$
\begin{aligned}
& d \omega\left(X_{0}, \ldots, X_{k}\right)=\sum_{i}(-1)^{i} X_{i}\left(\omega\left(X_{1}, \ldots, X_{k}\right)\right) \\
& +\sum_{i<j}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right], X_{1}, \hat{\ldots} \hat{.}, X_{k}\right)
\end{aligned}
$$

REMARKS

- The Cartan formula explicitly connects the differential structure of $\Omega(M)$ to the Lie structure of $\mathfrak{X}(M)$.

REMARKS

- The Cartan formula explicitly connects the differential structure of $\Omega(M)$ to the Lie structure of $\mathfrak{X}(M)$.
- This relationship holds more generally for Lie algebroids.

Courant algebroids and
COHOMOLOGY

COURANT ALGEBROIDS

Definition

A Courant algebroid is a vector bundle $E \rightarrow M$ equipped with a nondegenerate symmetric pairing $\langle\cdot, \cdot\rangle$, a bundle map $\rho: E \rightarrow T M$, and a bracket $\llbracket \cdot, \cdot \rrbracket$ such that

1. $\llbracket \llbracket e_{1}, e_{2} \rrbracket, e_{3} \rrbracket=\llbracket e_{1}, \llbracket e_{2}, e_{3} \rrbracket \rrbracket-\llbracket e_{2}, \llbracket e_{1}, e_{3} \rrbracket \rrbracket$,
2. $\llbracket e_{1}, f e_{2} \rrbracket=\rho\left(e_{1}\right)(f) e_{2}+f \llbracket e_{1}, e_{2} \rrbracket$,
3. $\rho\left(e_{1}\right)\left\langle e_{2}, e_{3}\right\rangle=\left\langle\llbracket e_{1}, e_{2} \rrbracket, e_{3}\right\rangle+\left\langle e_{2}, \llbracket e_{1}, e_{3} \rrbracket\right\rangle$,
4. $\llbracket e_{1}, e_{2} \rrbracket+\llbracket e_{2}, e_{1} \rrbracket=\mathcal{D}\left\langle e_{1}, e_{2}\right\rangle$,
where $\mathcal{D}: C^{\infty}(M) \rightarrow \Gamma(E)$ is given by $\langle\mathcal{D} f, e\rangle=\rho(e)(f)$.

COURANT ALGEBROIDS

Definition

A Courant algebroid is a vector bundle $E \rightarrow M$ equipped with a nondegenerate symmetric pairing $\langle\cdot, \cdot\rangle$, a bundle map $\rho: E \rightarrow T M$, and a bracket $\llbracket \cdot, \cdot \rrbracket$ such that

1. $\llbracket \llbracket e_{1}, e_{2} \rrbracket, e_{3} \rrbracket=\llbracket e_{1}, \llbracket e_{2}, e_{3} \rrbracket \rrbracket-\llbracket e_{2}, \llbracket e_{1}, e_{3} \rrbracket \rrbracket$,
2. $\llbracket e_{1}, f e_{2} \rrbracket=\rho\left(e_{1}\right)(f) e_{2}+f \llbracket e_{1}, e_{2} \rrbracket$,
3. $\rho\left(e_{1}\right)\left\langle e_{2}, e_{3}\right\rangle=\left\langle\llbracket e_{1}, e_{2} \rrbracket, e_{3}\right\rangle+\left\langle e_{2}, \llbracket e_{1}, e_{3} \rrbracket\right\rangle$,
4. $\llbracket e_{1}, e_{2} \rrbracket+\llbracket e_{2}, e_{1} \rrbracket=\mathcal{D}\left\langle e_{1}, e_{2}\right\rangle$,
where $\mathcal{D}: C^{\infty}(M) \rightarrow \Gamma(E)$ is given by $\langle\mathcal{D} f, e\rangle=\rho(e)(f)$.

- Examples: $T M \oplus T^{*} M$, quadratic Lie algebras

CoURANT ALGEBROIDS

Definition

A Courant algebroid is a vector bundle $E \rightarrow M$ equipped with a nondegenerate symmetric pairing $\langle\cdot, \cdot\rangle$, a bundle map $\rho: E \rightarrow T M$, and a bracket $\llbracket \cdot, \cdot \rrbracket$ such that

1. $\llbracket \llbracket e_{1}, e_{2} \rrbracket, e_{3} \rrbracket=\llbracket e_{1}, \llbracket e_{2}, e_{3} \rrbracket \rrbracket-\llbracket e_{2}, \llbracket e_{1}, e_{3} \rrbracket \rrbracket$,
2. $\llbracket e_{1}, f e_{2} \rrbracket=\rho\left(e_{1}\right)(f) e_{2}+f \llbracket e_{1}, e_{2} \rrbracket$,
3. $\rho\left(e_{1}\right)\left\langle e_{2}, e_{3}\right\rangle=\left\langle\llbracket e_{1}, e_{2} \rrbracket, e_{3}\right\rangle+\left\langle e_{2}, \llbracket e_{1}, e_{3} \rrbracket\right\rangle$,
4. $\llbracket e_{1}, e_{2} \rrbracket+\llbracket e_{2}, e_{1} \rrbracket=\mathcal{D}\left\langle e_{1}, e_{2}\right\rangle$,
where $\mathcal{D}: C^{\infty}(M) \rightarrow \Gamma(E)$ is given by $\langle\mathcal{D} f, e\rangle=\rho(e)(f)$.

- Examples: $T M \oplus T^{*} M$, quadratic Lie algebras
- Motivations: Dirac constraints, generalized geometry, 3d AKSZ theory,...

COURANT COHOMOLOGY

Theorem (Severa, Roytenberg)

Courant algebroids are in one-to-one correspondence with degree 2 symplectic dg-manifolds.

COURANT COHOMOLOGY

Theorem (Severa, Roytenberg)

Courant algebroids are in one-to-one correspondence with degree 2 symplectic dg-manifolds.

In particular, there is a cohomology theory associated to Courant algebroids.

COURANT COHOMOLOGY

Theorem (Severa, Roytenberg)

Courant algebroids are in one-to-one correspondence with degree 2 symplectic dg-manifolds.

In particular, there is a cohomology theory associated to Courant algebroids.

- For \mathfrak{g}, the complex is $\bigwedge \mathfrak{g}^{*}$ (Chevalley-Eilenberg complex).
- For $T M \oplus T^{*} M$, the complex is $\Omega\left(T^{*}[1] M\right)$.

COURANT COHOMOLOGY

Theorem (Severa, Roytenberg)

Courant algebroids are in one-to-one correspondence with degree 2 symplectic dg-manifolds.

In particular, there is a cohomology theory associated to Courant algebroids.

- For \mathfrak{g}, the complex is $\bigwedge \mathfrak{g}^{*}$ (Chevalley-Eilenberg complex).
- For $T M \oplus T^{*} M$, the complex is $\Omega\left(T^{*}[1] M\right)$.

For general Courant algebroids, there is an explicit description in low degrees:

$$
C^{\infty}(M) \xrightarrow{\mathcal{D}} \Gamma(E) \xrightarrow{\mathcal{L}} \mathcal{O}^{\langle,\rangle}(E) \rightarrow \cdots
$$

COURANT COHOMOLOGY

Theorem (Severa, Roytenberg)

Courant algebroids are in one-to-one correspondence with degree 2 symplectic dg-manifolds.

In particular, there is a cohomology theory associated to Courant algebroids.

- For \mathfrak{g}, the complex is $\bigwedge \mathfrak{g}^{*}$ (Chevalley-Eilenberg complex).
- For $T M \oplus T^{*} M$, the complex is $\Omega\left(T^{*}[1] M\right)$.

For general Courant algebroids, there is an explicit description in low degrees:

$$
C^{\infty}(M) \xrightarrow{\mathcal{D}} \Gamma(E) \xrightarrow{\mathcal{L}} \mathcal{O}^{\langle,\rangle}(E) \rightarrow \cdots
$$

but in general the known descriptions were suboptimal (local coords, connection, etc.).

The Keller-Waldmann algebra

The Keller-Waldmann algebra

Given a vector bundle $E \rightarrow M$ with nondegenerate pairing, define $\omega \in C^{k}(E)$ as a map

$$
\omega: \underbrace{\Gamma(E) \times \cdots \times \Gamma(E)}_{k} \rightarrow C^{\infty}(M)
$$

The Keller-Waldmann algebra

Given a vector bundle $E \rightarrow M$ with nondegenerate pairing, define $\omega \in C^{k}(E)$ as a map

$$
\omega: \underbrace{\Gamma(E) \times \cdots \times \Gamma(E)}_{k} \rightarrow C^{\infty}(M)
$$

- $C^{\infty}(M)$-linear in the last entry

The Keller-Waldmann algebra

Given a vector bundle $E \rightarrow M$ with nondegenerate pairing, define $\omega \in C^{k}(E)$ as a map

$$
\omega: \underbrace{\Gamma(E) \times \cdots \times \Gamma(E)}_{k} \rightarrow C^{\infty}(M)
$$

- $C^{\infty}(M)$-linear in the last entry
- For $k \geq 2$, there exists a map

$$
\sigma_{\omega}: \underbrace{\Gamma(E) \times \cdots \times \Gamma(E)}_{k-2} \rightarrow \mathfrak{X}(M)
$$

such that

$$
\begin{aligned}
& \omega\left(e_{1}, \ldots, e_{i}, e_{i+1}, \ldots, e_{k}\right)+\omega\left(e_{1}, \ldots, e_{i+1}, e_{i}, \ldots, e_{k}\right) \\
& =\sigma_{\omega}\left(e_{1}, \hat{\ldots} \hat{.}, e_{k}\right)\left(\left\langle e_{i}, e_{i+1}\right\rangle\right)
\end{aligned}
$$

COCHAINS IN LOW DEGREES

- Degree 0: $C^{\infty}(M)$

COCHAINS IN LOW DEGREES

- Degree 0: $C^{\infty}(M)$
- Degree 1: $\Gamma\left(E^{*}\right) \cong \Gamma(E)$

Cochains in low degrees

- Degree 0: $C^{\infty}(M)$
- Degree 1: $\Gamma\left(E^{*}\right) \cong \Gamma(E)$
- Degree 2: For $\omega \in C^{2}(E)$, define $\hat{\omega}: \Gamma(E) \rightarrow \Gamma(E)$ by

$$
\left\langle\hat{\omega}(e), e^{\prime}\right\rangle=\omega\left(e, e^{\prime}\right) .
$$

COCHAINS IN LOW DEGREES

- Degree 0: $C^{\infty}(M)$
- Degree 1: $\Gamma\left(E^{*}\right) \cong \Gamma(E)$
- Degree 2: For $\omega \in C^{2}(E)$, define $\hat{\omega}: \Gamma(E) \rightarrow \Gamma(E)$ by

$$
\left\langle\hat{\omega}(e), e^{\prime}\right\rangle=\omega\left(e, e^{\prime}\right) .
$$

- Well-defined since ω is $C^{\infty}(M)$-linear in last entry,
- $\left\langle\hat{\omega}(e), e^{\prime}\right\rangle=\sigma_{\omega}\left(\left\langle e, e^{\prime}\right\rangle\right)-\left\langle\hat{\omega}\left(e^{\prime}\right), e\right\rangle$,
- $\hat{\omega}(f e)=\sigma_{\omega}(f) e+f \hat{\omega}(e)$.

COCHAINS IN LOW DEGREES

- Degree 0: $C^{\infty}(M)$
- Degree 1: $\Gamma\left(E^{*}\right) \cong \Gamma(E)$
- Degree 2: For $\omega \in C^{2}(E)$, define $\hat{\omega}: \Gamma(E) \rightarrow \Gamma(E)$ by

$$
\left\langle\hat{\omega}(e), e^{\prime}\right\rangle=\omega\left(e, e^{\prime}\right) .
$$

- Well-defined since ω is $C^{\infty}(M)$-linear in last entry,
- $\left\langle\hat{\omega}(e), e^{\prime}\right\rangle=\sigma_{\omega}\left(\left\langle e, e^{\prime}\right\rangle\right)-\left\langle\hat{\omega}\left(e^{\prime}\right), e\right\rangle$,
- $\hat{\omega}(f e)=\sigma_{\omega}(f) e+f \hat{\omega}(e)$.
- Degree 3: For $\omega \in C^{3}(E)$, define $\hat{\omega}: \Gamma(E) \times \Gamma(E) \rightarrow \Gamma(E)$ by

$$
\left\langle\hat{\omega}\left(e, e^{\prime}\right), e^{\prime \prime}\right\rangle=\omega\left(e, e^{\prime}, e^{\prime \prime}\right)
$$

COCHAINS IN LOW DEGREES

- Degree 0: $C^{\infty}(M)$
- Degree 1: $\Gamma\left(E^{*}\right) \cong \Gamma(E)$
- Degree 2: For $\omega \in C^{2}(E)$, define $\hat{\omega}: \Gamma(E) \rightarrow \Gamma(E)$ by

$$
\left\langle\hat{\omega}(e), e^{\prime}\right\rangle=\omega\left(e, e^{\prime}\right) .
$$

- Well-defined since ω is $C^{\infty}(M)$-linear in last entry,
- $\left\langle\hat{\omega}(e), e^{\prime}\right\rangle=\sigma_{\omega}\left(\left\langle e, e^{\prime}\right\rangle\right)-\left\langle\hat{\omega}\left(e^{\prime}\right), e\right\rangle$,
- $\hat{\omega}(f e)=\sigma_{\omega}(f) e+f \hat{\omega}(e)$.
- Degree 3: For $\omega \in C^{3}(E)$, define $\hat{\omega}: \Gamma(E) \times \Gamma(E) \rightarrow \Gamma(E)$ by

$$
\left\langle\hat{\omega}\left(e, e^{\prime}\right), e^{\prime \prime}\right\rangle=\omega\left(e, e^{\prime}, e^{\prime \prime}\right)
$$

Exercise 1: $\hat{\omega}(\cdot, \cdot)$ satisfies 3 of the 4 axioms for a Courant bracket.

COCHAINS IN LOW DEGREES

- Degree 0: $C^{\infty}(M)$
- Degree 1: $\Gamma\left(E^{*}\right) \cong \Gamma(E)$
- Degree 2: For $\omega \in C^{2}(E)$, define $\hat{\omega}: \Gamma(E) \rightarrow \Gamma(E)$ by

$$
\left\langle\hat{\omega}(e), e^{\prime}\right\rangle=\omega\left(e, e^{\prime}\right) .
$$

- Well-defined since ω is $C^{\infty}(M)$-linear in last entry,
- $\left\langle\hat{\omega}(e), e^{\prime}\right\rangle=\sigma_{\omega}\left(\left\langle e, e^{\prime}\right\rangle\right)-\left\langle\hat{\omega}\left(e^{\prime}\right), e\right\rangle$,
- $\hat{\omega}(f e)=\sigma_{\omega}(f) e+f \hat{\omega}(e)$.
- Degree 3: For $\omega \in C^{3}(E)$, define $\hat{\omega}: \Gamma(E) \times \Gamma(E) \rightarrow \Gamma(E)$ by

$$
\left\langle\hat{\omega}\left(e, e^{\prime}\right), e^{\prime \prime}\right\rangle=\omega\left(e, e^{\prime}, e^{\prime \prime}\right)
$$

Exercise 1: $\hat{\omega}(\cdot, \cdot)$ satisfies 3 of the 4 axioms for a Courant bracket.
Exercise 2: If E has a Courant structure, then can define a 3 -cochain T by $T\left(e, e^{\prime}, e^{\prime \prime}\right)=\left\langle\llbracket e, e^{\prime} \rrbracket, e^{\prime \prime}\right\rangle$.

Keller-Waldmann=Severa-Roytenberg

- Keller and Waldmann showed that $C^{\bullet}(E)$ is a commutative graded algebra with a degree -2 Poisson bracket.

Keller-Waldmann=Severa-Roytenberg

- Keller and Waldmann showed that $C^{\bullet}(E)$ is a commutative graded algebra with a degree -2 Poisson bracket.
- They were working in an algebraic setting where the correspondence with dg-manifolds doesn't apply.

Keller-Waldmann=Severa-Roytenberg

- Keller and Waldmann showed that $C^{\bullet}(E)$ is a commutative graded algebra with a degree -2 Poisson bracket.
- They were working in an algebraic setting where the correspondence with dg-manifolds doesn't apply.

Theorem (Cueca-M)

In the smooth setting, the Keller-Waldmann algebra is isomorphic to the algebra of functions on the corresponding symplectic graded manifold.

Keller-Waldmann=Severa-Roytenberg

- Keller and Waldmann showed that $C^{\bullet}(E)$ is a commutative graded algebra with a degree -2 Poisson bracket.
- They were working in an algebraic setting where the correspondence with dg-manifolds doesn't apply.

Theorem (Cueca-M)

In the smooth setting, the Keller-Waldmann algebra is isomorphic to the algebra of functions on the corresponding symplectic graded manifold.

Idea: If ψ is a degree k function, then the corresponding k-cochain ω is given by

$$
\omega\left(e_{1}, \ldots, e_{k}\right)=\left\{e_{k}, \ldots,\left\{e_{2},\left\{e_{1}, \psi\right\}\right\} \ldots\right\}
$$

CARTAN CALCULUS

CARTAN CALCULUS, PART 1

- (Severa, Roytenberg) Courant structures on $E \rightarrow M$ are in correspondence with degree 3 functions θ such that $\{\theta, \theta\}=0$.

$$
\rho(e)(f)=\{\{e, \theta\}, f\}, \quad \llbracket e_{1}, e_{2} \rrbracket=\left\{\left\{e_{1}, \theta\right\}, e_{2}\right\} .
$$

CARTAN CALCULUS, PART 1

- (Severa, Roytenberg) Courant structures on $E \rightarrow M$ are in correspondence with degree 3 functions θ such that $\{\theta, \theta\}=0$.

$$
\rho(e)(f)=\{\{e, \theta\}, f\}, \quad \llbracket e_{1}, e_{2} \rrbracket=\left\{\left\{e_{1}, \theta\right\}, e_{2}\right\} .
$$

- Such a function induces a differential $d_{E}=\{\theta, \cdot\}$ on the algebra of functions.

CARTAN CALCULUS, PART 1

- (Severa, Roytenberg) Courant structures on $E \rightarrow M$ are in correspondence with degree 3 functions θ such that $\{\theta, \theta\}=0$.

$$
\rho(e)(f)=\{\{e, \theta\}, f\}, \quad \llbracket e_{1}, e_{2} \rrbracket=\left\{\left\{e_{1}, \theta\right\}, e_{2}\right\} .
$$

- Such a function induces a differential $d_{E}=\{\theta, \cdot\}$ on the algebra of functions.
- For $e \in \Gamma(E)$, also have operators $\iota_{e}=\{e, \cdot\}$ and $\mathcal{L}_{e}=\{\{e, \theta\}, \cdot\}$.

CARTAN CALCULUS, PART 1

- (Severa, Roytenberg) Courant structures on $E \rightarrow M$ are in correspondence with degree 3 functions θ such that $\{\theta, \theta\}=0$.

$$
\rho(e)(f)=\{\{e, \theta\}, f\}, \quad \llbracket e_{1}, e_{2} \rrbracket=\left\{\left\{e_{1}, \theta\right\}, e_{2}\right\} .
$$

- Such a function induces a differential $d_{E}=\{\theta, \cdot\}$ on the algebra of functions.
- For $e \in \Gamma(E)$, also have operators $\iota_{e}=\{e, \cdot\}$ and $\mathcal{L}_{e}=\{\{e, \theta\}, \cdot\}$.
- These operators satisfy the graded commutation relations

$$
\begin{aligned}
{\left[d_{E}, d_{E}\right] } & =2 d_{E}^{2}=0, & & {\left[d_{E}, \mathcal{L}_{e}\right]=0 } \\
{\left[\iota_{e}, d_{E}\right] } & =\mathcal{L}_{e}, & & {\left[\mathcal{L}_{e}, \mathcal{L}_{e^{\prime}}\right]=\mathcal{L}_{\left[e, e^{\prime}\right]} } \\
{\left[\mathcal{L}_{e}, \iota_{e^{\prime}}\right] } & =\iota_{\left[e, e^{\prime}\right]} & &
\end{aligned}
$$

CARTAN CALCULUS, PART 1

- (Severa, Roytenberg) Courant structures on $E \rightarrow M$ are in correspondence with degree 3 functions θ such that $\{\theta, \theta\}=0$.

$$
\rho(e)(f)=\{\{e, \theta\}, f\}, \quad \llbracket e_{1}, e_{2} \rrbracket=\left\{\left\{e_{1}, \theta\right\}, e_{2}\right\}
$$

- Such a function induces a differential $d_{E}=\{\theta, \cdot\}$ on the algebra of functions.
- For $e \in \Gamma(E)$, also have operators $\iota_{e}=\{e, \cdot\}$ and $\mathcal{L}_{e}=\{\{e, \theta\}, \cdot\}$.
- These operators satisfy the graded commutation relations

$$
\begin{aligned}
{\left[d_{E}, d_{E}\right] } & =2 d_{E}^{2}=0, & & {\left[d_{E}, \mathcal{L}_{e}\right]=0, } \\
{\left[\iota_{e}, d_{E}\right] } & =\mathcal{L}_{e}, & & {\left[\mathcal{L}_{e}, \mathcal{L}_{e^{\prime}}\right]=\mathcal{L}_{\left[e, e^{\prime}\right]} } \\
{\left[\mathcal{L}_{e}, \iota_{e^{\prime}}\right] } & =\iota_{\left[e, e^{\prime}\right]} & &
\end{aligned}
$$

but not $\left[\iota_{e}, \iota_{e^{\prime}}\right]=0$.

CARTAN CALCULUS, PART 2

- Can transfer $d_{E}, \iota_{e}, \mathcal{L}_{e}$ to operators on the Keller-Waldmann algebra.

CARTAN CALCULUS, PART 2

- Can transfer $d_{E}, \iota_{e}, \mathcal{L}_{e}$ to operators on the Keller-Waldmann algebra.
- In particular:

$$
\left(\iota_{e} \omega\right)\left(e_{1}, \ldots, e_{k-1}\right)=\omega\left(e, e_{1}, \ldots, e_{k-1}\right)
$$

CARTAN CALCULUS, PART 2

- Can transfer $d_{E}, \iota_{e}, \mathcal{L}_{e}$ to operators on the Keller-Waldmann algebra.
- In particular:

$$
\left(\iota_{e} \omega\right)\left(e_{1}, \ldots, e_{k-1}\right)=\omega\left(e, e_{1}, \ldots, e_{k-1}\right)
$$

Theorem (Cueca-M)

The differential satisfies the following Cartan formula:

$$
\begin{aligned}
d_{E} \omega\left(e_{0}, \ldots, e_{k}\right) & =\sum_{i}(-1)^{i} \rho\left(e_{i}\right)\left(\omega\left(e_{1}, \ldots, \widehat{e}_{i}, \ldots, e_{k}\right)\right) \\
& +\sum_{i<j}(-1)^{i+1} \omega\left(e_{1}, \ldots, \widehat{e}_{i}, \ldots, \llbracket e_{i}, e_{j} \rrbracket, \ldots, e_{k}\right)
\end{aligned}
$$

CONNECTIONS AND CURVATURE

E-CONNECTIONS

Let $E \rightarrow M$ be a Courant algebroid.
Definition (Alekseev-Xu)
An E-connection on a vector bundle $B \rightarrow M$ is a map
$\nabla: \Gamma(E) \times \Gamma(B) \rightarrow \Gamma(B)$ such that

- $\nabla_{e}(f b)=f \nabla_{e} b+\rho(e)(f) b$
- $\nabla_{f e} b=f \nabla_{e} b$

E-CONNECTIONS

Let $E \rightarrow M$ be a Courant algebroid.

Definition (Alekseev-Xu)

An E-connection on a vector bundle $B \rightarrow M$ is a map
$\nabla: \Gamma(E) \times \Gamma(B) \rightarrow \Gamma(B)$ such that

- $\nabla_{e}(f b)=f \nabla_{e} b+\rho(e)(f) b$
- $\nabla_{f e} b=f \nabla_{e} b$

The curvature of an E-connection is defined as usual:

$$
F_{\nabla}\left(e_{1}, e_{2}\right)=\nabla_{e_{1}} \nabla_{e_{2}}-\nabla_{e_{2}} \nabla_{e_{1}}-\nabla_{\llbracket e_{1}, e_{2} \rrbracket} .
$$

E-CONNECTIONS

Let $E \rightarrow M$ be a Courant algebroid.

Definition (Alekseev-Xu)

An E-connection on a vector bundle $B \rightarrow M$ is a map
$\nabla: \Gamma(E) \times \Gamma(B) \rightarrow \Gamma(B)$ such that

- $\nabla_{e}(f b)=f \nabla_{e} b+\rho(e)(f) b$
- $\nabla_{f e} b=f \nabla_{e} b$

The curvature of an E-connection is defined as usual:

$$
F_{\nabla}\left(e_{1}, e_{2}\right)=\nabla_{e_{1}} \nabla_{e_{2}}-\nabla_{e_{2}} \nabla_{e_{1}}-\nabla_{\llbracket e_{1}, e_{2} \rrbracket}
$$

Exercise 3: F_{∇} is an $\operatorname{End}(B)$-valued 2-cochain.

COVARIANT DERIVATIVES

- Given an E-connection ∇ on B, we can define an operator D_{∇} on $C^{\bullet}(E) \otimes \Gamma(B)$:

$$
\begin{aligned}
D_{\nabla \omega} \omega\left(e_{0}, \ldots, e_{k}\right) & =\sum_{i}(-1)^{i} \nabla_{e_{i}} \omega\left(e_{1}, \ldots, \widehat{e}_{i}, \ldots, e_{k}\right) \\
& +\sum_{i<j}(-1)^{i+1} \omega\left(e_{1}, \ldots, \widehat{e}_{i}, \ldots, \llbracket e_{i}, e_{j} \rrbracket, \ldots, e_{k}\right)
\end{aligned}
$$

COVARIANT DERIVATIVES

- Given an E-connection ∇ on B, we can define an operator D_{∇} on $C^{\bullet}(E) \otimes \Gamma(B)$:

$$
\begin{aligned}
D_{\nabla \omega}\left(e_{0}, \ldots, e_{k}\right) & =\sum_{i}(-1)^{i} \nabla_{e_{i}} \omega\left(e_{1}, \ldots, \widehat{e}_{i}, \ldots, e_{k}\right) \\
& +\sum_{i<j}(-1)^{i+1} \omega\left(e_{1}, \ldots, \widehat{e}_{i}, \ldots, \llbracket e_{i}, e_{j} \rrbracket, \ldots, e_{k}\right)
\end{aligned}
$$

- This gives a correspondence between E-connections ∇ and operators D_{∇} such that...

COVARIANT DERIVATIVES

- Given an E-connection ∇ on B, we can define an operator D_{∇} on $C^{\bullet}(E) \otimes \Gamma(B)$:

$$
\begin{aligned}
D_{\nabla \omega}\left(e_{0}, \ldots, e_{k}\right) & =\sum_{i}(-1)^{i} \nabla_{e_{i}} \omega\left(e_{1}, \ldots, \widehat{e}_{i}, \ldots, e_{k}\right) \\
& +\sum_{i<j}(-1)^{i+1} \omega\left(e_{1}, \ldots, \widehat{e}_{i}, \ldots, \llbracket e_{i}, e_{j} \rrbracket, \ldots, e_{k}\right)
\end{aligned}
$$

- This gives a correspondence between E-connections ∇ and operators D_{∇} such that...

Exercise 4: The Bianchi identity $D_{\nabla} F_{\nabla}=0$ holds.

AdJoint connection

- Let $\hat{\nabla}$ be a linear connection on E. Then we can define an adjoint E-connection ∇^{E} on E by:

$$
\nabla_{e_{1}}^{E} e_{2}=\llbracket e_{1}, e_{2} \rrbracket+\hat{\nabla}_{\rho\left(e_{2}\right)} e_{1}-\rho^{*}\left\langle D_{\hat{\nabla}} e_{1}, e_{2}\right\rangle
$$

AdJoint connection

- Let $\hat{\nabla}$ be a linear connection on E. Then we can define an adjoint E-connection ∇^{E} on E by:

$$
\nabla_{e_{1}}^{E} e_{2}=\llbracket e_{1}, e_{2} \rrbracket+\hat{\nabla}_{\rho\left(e_{2}\right)} e_{1}-\rho^{*}\left\langle D_{\hat{\nabla}} e_{1}, e_{2}\right\rangle
$$

- The adjoint E-connection is compatible with the pairing:

$$
\left\langle\nabla_{e_{1}}^{E} e_{2}, e_{3}\right\rangle+\left\langle e_{2}, \nabla_{e_{1}}^{E} e_{3}\right\rangle=\rho\left(e_{1}\right)\left\langle e_{2}, e_{3}\right\rangle
$$

AdJoint connection

- Let $\hat{\nabla}$ be a linear connection on E. Then we can define an adjoint E-connection ∇^{E} on E by:

$$
\nabla_{e_{1}}^{E} e_{2}=\llbracket e_{1}, e_{2} \rrbracket+\hat{\nabla}_{\rho\left(e_{2}\right)} e_{1}-\rho^{*}\left\langle D_{\hat{\nabla}} e_{1}, e_{2}\right\rangle
$$

- The adjoint E-connection is compatible with the pairing:

$$
\left\langle\nabla_{e_{1}}^{E} e_{2}, e_{3}\right\rangle+\left\langle e_{2}, \nabla_{e_{1}}^{E} e_{3}\right\rangle=\rho\left(e_{1}\right)\left\langle e_{2}, e_{3}\right\rangle
$$

- Not flat! But induces a flat E-connection on $\operatorname{ker} \rho / \operatorname{im} \rho^{*}$.

AdJoint connection

- Let $\hat{\nabla}$ be a linear connection on E. Then we can define an adjoint E-connection ∇^{E} on E by:

$$
\nabla_{e_{1}}^{E} e_{2}=\llbracket e_{1}, e_{2} \rrbracket+\hat{\nabla}_{\rho\left(e_{2}\right)} e_{1}-\rho^{*}\left\langle D_{\hat{\nabla}} e_{1}, e_{2}\right\rangle
$$

- The adjoint E-connection is compatible with the pairing:

$$
\left\langle\nabla_{e_{1}}^{E} e_{2}, e_{3}\right\rangle+\left\langle e_{2}, \nabla_{e_{1}}^{E} e_{3}\right\rangle=\rho\left(e_{1}\right)\left\langle e_{2}, e_{3}\right\rangle
$$

- Not flat! But induces a flat E-connection on $\operatorname{ker} \rho / \operatorname{im} \rho^{*}$.
- Also: $\operatorname{tr}\left(F_{\nabla_{E}}^{k}\right)=0$ when k odd.

ChARACTERISTIC CLASSES

MODULAR CLASS

Let $E \rightarrow M$ be a Courant algebroid, ∇ a flat E-connection on a line bundle $L \rightarrow M$.

MoDULAR CLASS

Let $E \rightarrow M$ be a Courant algebroid, ∇ a flat E-connection on a line bundle $L \rightarrow M$.

- Stiénon and Xu defined the modular class of (L, ∇) via the naïve complex, following same procedure as Evens-Lu-Weinstein.

MoDULAR CLASS

Let $E \rightarrow M$ be a Courant algebroid, ∇ a flat E-connection on a line bundle $L \rightarrow M$.

- Stiénon and Xu defined the modular class of (L, ∇) via the naïve complex, following same procedure as Evens-Lu-Weinstein.
- We can now place the construction directly in the Keller-Waldmann complex.

MODULAR CLASS

Let $E \rightarrow M$ be a Courant algebroid, ∇ a flat E-connection on a line bundle $L \rightarrow M$.

- Stiénon and Xu defined the modular class of (L, ∇) via the naïve complex, following same procedure as Evens-Lu-Weinstein.
- We can now place the construction directly in the Keller-Waldmann complex.
- There is a canonical flat E-connection $\nabla^{\text {top }}$ on $\bigwedge^{\text {top }} E$. The (intrinsic) modular class of E is the modular class of $\left(\bigwedge^{\mathrm{top}} E, \nabla^{\mathrm{top}}\right)$.

MoDULAR CLASS

Let $E \rightarrow M$ be a Courant algebroid, ∇ a flat E-connection on a line bundle $L \rightarrow M$.

- Stiénon and Xu defined the modular class of (L, ∇) via the naïve complex, following same procedure as Evens-Lu-Weinstein.
- We can now place the construction directly in the Keller-Waldmann complex.
- There is a canonical flat E-connection $\nabla^{\text {top }}$ on $\bigwedge^{\text {top }} E$. The (intrinsic) modular class of E is the modular class of $\left(\bigwedge^{\mathrm{top}} E, \nabla^{\mathrm{top}}\right)$.

Proposition (Cueca-M)

The modular class vanishes for all E.

Chern-Weil, Chern-Simons

- Given an E-connection ∇ on a vector bundle B, let $\operatorname{ch}_{k}(\nabla)=\operatorname{tr}\left(F_{\nabla}^{k}\right) \in C^{2 k}(E)$.

Chern-Weil, Chern-Simons

- Given an E-connection ∇ on a vector bundle B, let $\operatorname{ch}_{k}(\nabla)=\operatorname{tr}\left(F_{\nabla}^{k}\right) \in C^{2 k}(E)$.
- As in the classical theory:
- $d_{E} \operatorname{ch}_{k}(\nabla)=0$,
- The cohomology class is independent of the connection.

Chern-Weil, Chern-Simons

- Given an E-connection ∇ on a vector bundle B, let $\operatorname{ch}_{k}(\nabla)=\operatorname{tr}\left(F_{\nabla}^{k}\right) \in C^{2 k}(E)$.
- As in the classical theory:
- $d_{E} \operatorname{ch}_{k}(\nabla)=0$,
- The cohomology class is independent of the connection.
- Given two E-connections ∇_{0}, ∇_{1}, can produce Chern-Simons-type transgression forms

$$
\operatorname{cs}_{k}\left(\nabla_{0}, \nabla_{1}\right) \in C^{2 k-1}(E)
$$

Chern-Weil, Chern-Simons

- Given an E-connection ∇ on a vector bundle B, let $\operatorname{ch}_{k}(\nabla)=\operatorname{tr}\left(F_{\nabla}^{k}\right) \in C^{2 k}(E)$.
- As in the classical theory:
- $d_{E} \operatorname{ch}_{k}(\nabla)=0$,
- The cohomology class is independent of the connection.
- Given two E-connections ∇_{0}, ∇_{1}, can produce Chern-Simons-type transgression forms

$$
\operatorname{cs}_{k}\left(\nabla_{0}, \nabla_{1}\right) \in C^{2 k-1}(E)
$$

- As in the classical theory,

$$
d_{E} \operatorname{cs}_{k}\left(\nabla_{0}, \nabla_{1}\right)=\operatorname{ch}_{k}\left(\nabla_{1}\right)-\operatorname{ch}_{k}\left(\nabla_{0}\right)
$$

so if $\operatorname{ch}_{k}\left(\nabla_{0}\right)=\operatorname{ch}_{k}\left(\nabla_{1}\right)=0$, the transgression form is closed.

INTRINSIC SECONDARY CHARACTERISTIC CLASSES

- Make the following choices on E :
- a linear connection $\hat{\nabla}$
- a positive definite metric g

INTRINSIC SECONDARY CHARACTERISTIC CLASSES

- Make the following choices on E :
- a linear connection $\hat{\nabla}$
- a positive definite metric g
- Get the adjoint connection ∇^{E} and the adjoint of the adjoint connection $\nabla^{E, g}$.

INTRINSIC SECONDARY CHARACTERISTIC CLASSES

- Make the following choices on E :
- a linear connection $\hat{\nabla}$
- a positive definite metric g
- Get the adjoint connection ∇^{E} and the adjoint of the adjoint connection $\nabla^{E, g}$.
- When k is odd, $\operatorname{ch}_{k}\left(\nabla^{E}\right)=\operatorname{ch}_{k}\left(\nabla^{E, g}\right)=0$, $\operatorname{socs}_{k}\left(\nabla^{E}, \nabla^{E, g}\right)$ is closed.

INTRINSIC SECONDARY CHARACTERISTIC CLASSES

- Make the following choices on E :
- a linear connection $\hat{\nabla}$
- a positive definite metric g
- Get the adjoint connection ∇^{E} and the adjoint of the adjoint connection $\nabla^{E, g}$.
- When k is odd, $\operatorname{ch}_{k}\left(\nabla^{E}\right)=\operatorname{ch}_{k}\left(\nabla^{E, g}\right)=0$, $\operatorname{socs}_{k}\left(\nabla^{E}, \nabla^{E, g}\right)$ is closed.

Theorem (Cueca-M)

The classes $\left[\operatorname{cs}_{k}\left(\nabla^{E}, \nabla^{E, g}\right)\right] \in H^{2 k-1}(E)$ are independent of the choices.

Remarks

- When you choose $\hat{\nabla}$, you also get E-connections $\nabla^{T M}$ and $\nabla^{T^{*} M}$ on $T M$ and $T^{*} M$. Part of a rep up to homotopy of E on $T^{*} M \rightarrow E \rightarrow T M$.

Remarks

- When you choose $\hat{\nabla}$, you also get E-connections $\nabla^{T M}$ and $\nabla^{T^{*} M}$ on $T M$ and $T^{*} M$. Part of a rep up to homotopy of E on $T^{*} M \rightarrow E \rightarrow T M$.
- For Lie algebroids, characteristic class constructions require reps up to homotopy, but for Courant algebroids we only need a connection!

REMARKS

- When you choose $\hat{\nabla}$, you also get E-connections $\nabla^{T M}$ and $\nabla^{T^{*} M}$ on $T M$ and $T^{*} M$. Part of a rep up to homotopy of E on $T^{*} M \rightarrow E \rightarrow T M$.
- For Lie algebroids, characteristic class constructions require reps up to homotopy, but for Courant algebroids we only need a connection!
- Explanation: the $T^{*} M$ and $T M$ components "cancel".

THANKS!

Miquel Cueca and Rajan Amit Mehta, "Courant cohomology, Cartan calculus, connections, curvature, characteristic classes," arXiv:1911.05898

