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WARM-UP: DE RHAM THEORY



CARTAN CALCULUS IN DE RHAM THEORY

LetM be a manifold.

• The operators d, ιX , and LX are graded derivations of
Ω(M).

• They satisfy the following graded commutation relations:

[d, d] = 2d2 = 0, [d,LX ] = 0,

[ιX , d] = LX , [LX ,LY ] = L[X,Y ],

[ιX , ιY ] = 0, [LX , ιY ] = ι[X,Y ].

• Using these relations, can derive the Cartan formula

dω(X0, . . . , Xk) =
∑
i

(−1)iXi(ω(X1, ˆ. . ., Xk))

+
∑
i<j

(−1)i+jω([Xi, Xj ], X1, ˆ. . . ˆ. . ., Xk).

1



CARTAN CALCULUS IN DE RHAM THEORY

LetM be a manifold.

• The operators d, ιX , and LX are graded derivations of
Ω(M).

• They satisfy the following graded commutation relations:

[d, d] = 2d2 = 0, [d,LX ] = 0,

[ιX , d] = LX , [LX ,LY ] = L[X,Y ],

[ιX , ιY ] = 0, [LX , ιY ] = ι[X,Y ].

• Using these relations, can derive the Cartan formula

dω(X0, . . . , Xk) =
∑
i

(−1)iXi(ω(X1, ˆ. . ., Xk))

+
∑
i<j

(−1)i+jω([Xi, Xj ], X1, ˆ. . . ˆ. . ., Xk).

1



CARTAN CALCULUS IN DE RHAM THEORY

LetM be a manifold.

• The operators d, ιX , and LX are graded derivations of
Ω(M).

• They satisfy the following graded commutation relations:

[d, d] = 2d2 = 0, [d,LX ] = 0,

[ιX , d] = LX , [LX ,LY ] = L[X,Y ],

[ιX , ιY ] = 0, [LX , ιY ] = ι[X,Y ].

• Using these relations, can derive the Cartan formula

dω(X0, . . . , Xk) =
∑
i

(−1)iXi(ω(X1, ˆ. . ., Xk))

+
∑
i<j

(−1)i+jω([Xi, Xj ], X1, ˆ. . . ˆ. . ., Xk).

1



REMARKS

• The Cartan formula explicitly connects the differential
structure of Ω(M) to the Lie structure of X(M).

• This relationship holds more generally for Lie algebroids.
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COURANT ALGEBROIDS AND
COHOMOLOGY



COURANT ALGEBROIDS

Definition
A Courant algebroid is a vector bundle E →M equipped
with a nondegenerate symmetric pairing ⟨·, ·⟩, a bundle map
ρ : E → TM , and a bracket J·, ·K such that

1. JJe1, e2K, e3K = Je1, Je2, e3KK − Je2, Je1, e3KK,
2. Je1, fe2K = ρ(e1)(f)e2 + fJe1, e2K,
3. ρ(e1)⟨e2, e3⟩ = ⟨Je1, e2K, e3⟩+ ⟨e2, Je1, e3K⟩,
4. Je1, e2K + Je2, e1K = D⟨e1, e2⟩,

where D : C∞(M) → Γ(E) is given by ⟨Df, e⟩ = ρ(e)(f).

• Examples: TM ⊕ T ∗M , quadratic Lie algebras
• Motivations: Dirac constraints, generalized geometry, 3d
AKSZ theory,...
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COURANT COHOMOLOGY

Theorem (Severa, Roytenberg)
Courant algebroids are in one-to-one correspondence with
degree 2 symplectic dg-manifolds.

In particular, there is a cohomology theory associated to
Courant algebroids.

• For g, the complex is
∧
g∗ (Chevalley-Eilenberg complex).

• For TM ⊕ T ∗M , the complex is Ω(T ∗[1]M).

For general Courant algebroids, there is an explicit description
in low degrees:

C∞(M)
D−→ Γ(E)

L−→ O⟨,⟩(E) → · · ·

but in general the known descriptions were suboptimal (local
coords, connection, etc.).
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THE KELLER-WALDMANN ALGEBRA



THE KELLER-WALDMANN ALGEBRA

Given a vector bundle E →M with nondegenerate pairing,
define ω ∈ Ck(E) as a map

ω : Γ(E)× · · · × Γ(E)︸ ︷︷ ︸
k

→ C∞(M)

• C∞(M)-linear in the last entry
• For k ≥ 2, there exists a map

σω : Γ(E)× · · · × Γ(E)︸ ︷︷ ︸
k−2

→ X(M)

such that

ω(e1, . . . , ei, ei+1, . . . , ek) + ω(e1, . . . , ei+1, ei, . . . , ek)

= σω(e1, ˆ. . . ˆ. . ., ek)(⟨ei, ei+1⟩).
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COCHAINS IN LOW DEGREES

• Degree 0: C∞(M)

• Degree 1: Γ(E∗) ∼= Γ(E)

• Degree 2: For ω ∈ C2(E), define ω̂ : Γ(E) → Γ(E) by

⟨ω̂(e), e′⟩ = ω(e, e′).

• Well-defined since ω is C∞(M)-linear in last entry,
• ⟨ω̂(e), e′⟩ = σω(⟨e, e′⟩)− ⟨ω̂(e′), e⟩,
• ω̂(fe) = σω(f)e+ fω̂(e).

• Degree 3: For ω ∈ C3(E), define ω̂ : Γ(E)× Γ(E) → Γ(E)

by
⟨ω̂(e, e′), e′′⟩ = ω(e, e′, e′′).

Exercise 1: ω̂(·, ·) satisfies 3 of the 4 axioms for a Courant
bracket.
Exercise 2: If E has a Courant structure, then can define a
3-cochain T by T (e, e′, e′′) = ⟨Je, e′K, e′′⟩.
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KELLER-WALDMANN=SEVERA-ROYTENBERG

• Keller and Waldmann showed that C•(E) is a commutative
graded algebra with a degree −2 Poisson bracket.

• They were working in an algebraic setting where the
correspondence with dg-manifolds doesn’t apply.

Theorem (Cueca-M)
In the smooth setting, the Keller-Waldmann algebra is
isomorphic to the algebra of functions on the corresponding
symplectic graded manifold.

Idea: If ψ is a degree k function, then the corresponding
k-cochain ω is given by

ω(e1, . . . , ek) = {ek, . . . , {e2, {e1, ψ}} . . . }.
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CARTAN CALCULUS, PART 1

• (Severa, Roytenberg) Courant structures on E →M are in
correspondence with degree 3 functions θ such that
{θ, θ} = 0.

ρ(e)(f) = {{e, θ}, f}, Je1, e2K = {{e1, θ}, e2}.

• Such a function induces a differential dE = {θ, ·} on the
algebra of functions.

• For e ∈ Γ(E), also have operators ιe = {e, ·} and
Le = {{e, θ}, ·}.

• These operators satisfy the graded commutation relations

[dE , dE ] = 2d2E = 0, [dE ,Le] = 0,

[ιe, dE ] = Le, [Le,Le′ ] = L[e,e′],

[Le, ιe′ ] = ι[e,e′]

but not [ιe, ιe′ ] = 0.

8



CARTAN CALCULUS, PART 1

• (Severa, Roytenberg) Courant structures on E →M are in
correspondence with degree 3 functions θ such that
{θ, θ} = 0.

ρ(e)(f) = {{e, θ}, f}, Je1, e2K = {{e1, θ}, e2}.

• Such a function induces a differential dE = {θ, ·} on the
algebra of functions.

• For e ∈ Γ(E), also have operators ιe = {e, ·} and
Le = {{e, θ}, ·}.

• These operators satisfy the graded commutation relations

[dE , dE ] = 2d2E = 0, [dE ,Le] = 0,

[ιe, dE ] = Le, [Le,Le′ ] = L[e,e′],

[Le, ιe′ ] = ι[e,e′]

but not [ιe, ιe′ ] = 0.

8



CARTAN CALCULUS, PART 1

• (Severa, Roytenberg) Courant structures on E →M are in
correspondence with degree 3 functions θ such that
{θ, θ} = 0.

ρ(e)(f) = {{e, θ}, f}, Je1, e2K = {{e1, θ}, e2}.

• Such a function induces a differential dE = {θ, ·} on the
algebra of functions.

• For e ∈ Γ(E), also have operators ιe = {e, ·} and
Le = {{e, θ}, ·}.

• These operators satisfy the graded commutation relations

[dE , dE ] = 2d2E = 0, [dE ,Le] = 0,

[ιe, dE ] = Le, [Le,Le′ ] = L[e,e′],

[Le, ιe′ ] = ι[e,e′]

but not [ιe, ιe′ ] = 0.

8



CARTAN CALCULUS, PART 1

• (Severa, Roytenberg) Courant structures on E →M are in
correspondence with degree 3 functions θ such that
{θ, θ} = 0.

ρ(e)(f) = {{e, θ}, f}, Je1, e2K = {{e1, θ}, e2}.

• Such a function induces a differential dE = {θ, ·} on the
algebra of functions.

• For e ∈ Γ(E), also have operators ιe = {e, ·} and
Le = {{e, θ}, ·}.

• These operators satisfy the graded commutation relations

[dE , dE ] = 2d2E = 0, [dE ,Le] = 0,

[ιe, dE ] = Le, [Le,Le′ ] = L[e,e′],

[Le, ιe′ ] = ι[e,e′]

but not [ιe, ιe′ ] = 0.

8



CARTAN CALCULUS, PART 1

• (Severa, Roytenberg) Courant structures on E →M are in
correspondence with degree 3 functions θ such that
{θ, θ} = 0.

ρ(e)(f) = {{e, θ}, f}, Je1, e2K = {{e1, θ}, e2}.

• Such a function induces a differential dE = {θ, ·} on the
algebra of functions.

• For e ∈ Γ(E), also have operators ιe = {e, ·} and
Le = {{e, θ}, ·}.

• These operators satisfy the graded commutation relations

[dE , dE ] = 2d2E = 0, [dE ,Le] = 0,

[ιe, dE ] = Le, [Le,Le′ ] = L[e,e′],

[Le, ιe′ ] = ι[e,e′]

but not [ιe, ιe′ ] = 0. 8



CARTAN CALCULUS, PART 2

• Can transfer dE , ιe,Le to operators on the
Keller-Waldmann algebra.

• In particular:

(ιeω)(e1, . . . , ek−1) = ω(e, e1, . . . , ek−1).

Theorem (Cueca-M)
The differential satisfies the following Cartan formula:

dEω(e0, . . . , ek) =
∑
i

(−1)iρ(ei)(ω(e1, . . . , êi, . . . , ek))

+
∑
i<j

(−1)i+1ω(e1, . . . , êi, . . . , Jei, ejK, . . . , ek)
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CONNECTIONS AND CURVATURE



E-CONNECTIONS

Let E →M be a Courant algebroid.

Definition (Alekseev-Xu)
An E-connection on a vector bundle B →M is a map
∇ : Γ(E)× Γ(B) → Γ(B) such that

• ∇e(fb) = f∇eb+ ρ(e)(f)b

• ∇feb = f∇eb

The curvature of an E-connection is defined as usual:

F∇(e1, e2) = ∇e1∇e2 −∇e2∇e1 −∇Je1,e2K.
Exercise 3: F∇ is an End(B)-valued 2-cochain.
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COVARIANT DERIVATIVES

• Given an E-connection ∇ on B, we can define an operator
D∇ on C•(E)⊗ Γ(B):

D∇ω(e0, . . . , ek) =
∑
i

(−1)i∇eiω(e1, . . . , êi, . . . , ek)

+
∑
i<j

(−1)i+1ω(e1, . . . , êi, . . . , Jei, ejK, . . . , ek)

• This gives a correspondence between E-connections ∇
and operators D∇ such that...

Exercise 4: The Bianchi identity D∇F∇ = 0 holds.
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+
∑
i<j
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ADJOINT CONNECTION

• Let ∇̂ be a linear connection on E. Then we can define an
adjoint E-connection ∇E on E by:

∇E
e1e2 = Je1, e2K + ∇̂ρ(e2)e1 − ρ∗⟨D∇̂e1, e2⟩

• The adjoint E-connection is compatible with the pairing:

⟨∇E
e1e2, e3⟩+ ⟨e2,∇E

e1e3⟩ = ρ(e1)⟨e2, e3⟩

• Not flat! But induces a flat E-connection on ker ρ/ im ρ∗.
• Also: tr(F k

∇E ) = 0 when k odd.
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CHARACTERISTIC CLASSES



MODULAR CLASS

Let E →M be a Courant algebroid, ∇ a flat E-connection on a
line bundle L→M .

• Stiénon and Xu defined the modular class of (L,∇) via the
naïve complex, following same procedure as
Evens-Lu-Weinstein.

• We can now place the construction directly in the
Keller-Waldmann complex.

• There is a canonical flat E-connection ∇top on
∧topE. The

(intrinsic) modular class of E is the modular class of(∧topE,∇top
)
.

Proposition (Cueca-M)
The modular class vanishes for all E.
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CHERN-WEIL, CHERN-SIMONS

• Given an E-connection ∇ on a vector bundle B, let
chk(∇) = tr(F k

∇) ∈ C2k(E).

• As in the classical theory:
• dEchk(∇) = 0,
• The cohomology class is independent of the connection.

• Given two E-connections ∇0,∇1, can produce
Chern-Simons-type transgression forms

csk(∇0,∇1) ∈ C2k−1(E).

• As in the classical theory,

dEcsk(∇0,∇1) = chk(∇1)− chk(∇0)

so if chk(∇0) = chk(∇1) = 0, the transgression form is
closed.
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INTRINSIC SECONDARY CHARACTERISTIC CLASSES

• Make the following choices on E:
• a linear connection ∇̂
• a positive definite metric g

• Get the adjoint connection ∇E and the adjoint of the
adjoint connection ∇E,g .

• When k is odd, chk(∇E) = chk(∇E,g) = 0, so csk(∇E ,∇E,g)

is closed.

Theorem (Cueca-M)
The classes [csk(∇E ,∇E,g)] ∈ H2k−1(E) are independent of
the choices.
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REMARKS

• When you choose ∇̂, you also get E-connections ∇TM

and ∇T ∗M on TM and T ∗M . Part of a rep up to homotopy
of E on T ∗M → E → TM .

• For Lie algebroids, characteristic class constructions
require reps up to homotopy, but for Courant algebroids
we only need a connection!

• Explanation: the T ∗M and TM components “cancel”.
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THANKS!

Miquel Cueca and Rajan Amit Mehta, “Courant cohomology,
Cartan calculus, connections, curvature, characteristic classes,”
arXiv:1911.05898
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