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What is a Frobenius object?

Let C be a monoidal category with monoidal unit 1 and monoidal product ⊗. A Frobenius object

in C is an object X ∈ Ob(C) equipped with morphisms

η : 1 → X (Unit)

µ : X ⊗ X → X (Multiplication)

ε : X → 1 (Counit)

satisfying the following axioms:

Unitality: µ ◦ (1 × η) = µ ◦ (η × 1) = 1
Associativity: µ ◦ (1 × µ) = µ ◦ (µ × 1)
Nondegeneracy: There exists β : 1 → X ⊗ X such that

(ε ⊗ 1) ◦ (µ ⊗ 1) ◦ (1 ⊗ β) = (1 ⊗ ε) ◦ (1 ⊗ µ) ◦ (β ⊗ 1) = 1.

It can be helpful to use string diagrams to describe morphisms built out of the above. The unit,

multiplication, and counit are denoted by the following diagrams (read from top to bottom):

It can be proven that β in the nondegeneracy condition is unique. It is denoted by

The equations in the axioms can be rewritten using string diagrams:

= = = = =

Comultiplication can be defined by

=

and you can use the above axioms to prove that it is counital and coassociative.

If C is symmetric monoidal, then we can define commutative Frobenius objects.

Why Frobenius objects?

A well-known result (see [5]) is that commutative Frobenius objects in C correspond to C-valued
2-dimensional topological field theories (i.e. symmetric monoidal functors from the 2D cobordism

category to C.)
In particular, a commutative Frobenius object gives invariants of closed surfaces. The invariants

are in MorC(1, 1). For example, the invariants associated to the sphere and torus are

Noncommutative Frobenius objects appear in related situations, e.g. in extended TFTs.

This is based on joint work with Ruoqi Zhang [7], with Ivan Contreras and Molly Keller [2], and

works in progress with Ivan Contreras, Adele Long, Sophia Marx, and Walker Stern.

What are Rel and Span?

Rel is the category whose objects are sets, and where a morphism from X to Y is a relation

R ⊆ X × Y . If S ⊆ Y × Z is a morphism from Y to Z , then the composition S ◦ R ⊆ X × Z is

given by

S ◦ R = {(x, z) : (x, y) ∈ R and (y, z) ∈ S for some y ∈ Y }.

Span is the category whose objects are sets, and where a morphism from X to Y is an

isomorphism class of spans

A

X Y

f2f1

Composition is given by pullback:

A f2×g1B

A B

X Y Z

p1 p2

f1 f2 g1 g2

The Cartesian product gives both Rel and Span the structure of a symmetric monoidal category.
There is a natural symmetric monoidal functor Span → Rel, so a Frobenius object in Span induces
a Frobenius object in Rel (but the converse isn’t true).

Why Rel and Span?

Our main motivation is that Rel and Span can be seen as set-theoretic models for the symplectic

category.

In principle, the the symplectic category has symplectic manifolds as objects and Lagrangian re-

lations as morphisms. But this definition isn’t well-defined because Lagrangian relations don’t

compose nicely.

If you simply ignore the geometry, then you get Rel.
A rigorous definition of the symplectic category was given byWehrheim and Woodward [9].

The morphisms are more sophisticated (formal compositions of Lagrangian relations modulo

an equivalence relation). Li-Bland and Weinstein [6] gave a general formulation of the

Wehrheim-Woodward construction. When you apply this construction to Rel, you get Span.

Although Rel and Span seem simple, you can get nontrivial invariants from them! In both cases,

the monoidal unit is the one-point set {•}.

There are exactly two relations from {•} to itself: the empty one and the one that’s
nonempty. They can be viewed as booleans (”false” and ”true”, respectively). So the invariants

coming from a commutative Frobenius object in Rel are booleans.
A span from {•} to {•} is given by set (up to isomorphism). So the invariants coming from a

commutative Frobenius object in Span are cardinalities. Note: in the special case where the
spans are finite, then the invariants are natural numbers.

Main result

Frobenius objects in Rel and Span can be encoded as simplicial sets equipped with an automor-
phism α̂ of the set of 1-simplices. The simplicial sets that arise from Frobenius objects satisfy

conditions that are similar to (but weaker than) the 2-Segal conditions (c.f. [3, 4, 1, 8]), with an
additional compatibility condition for α̂.

Important example

An important class of examples comes from groupoids. The nerve of a groupoid satisfies the

conditions for a Frobenius object in Span. One can take α̂ to be the inverse map, but more

generally one can use any section of the target map to “twist” the inverse map.

In fact: A symplectic groupoid can be seen as a Frobenius object in the symplectic category!

More examples

There are examples of Frobenius objects in Rel and Span that don’t come from groupoids. There

are constructions coming from compact oriented Riemannianmanifolds, from conjugacy classes

of groups, and more. Additionally, we have classified Frobenius objects in Rel with 2 or 3 ele-
ments. There are 5 Frobenius objects in Rel with 2 elements, and 23 Frobenius objects in Rel
with 3 elements.

Calculations of invariants

Invariants arising from commutative Frobenius objects in Rel and Span can often be explicitly

calculated. Let Z(Σg) denote the invariant associated to the genus g surface.

Let G be a finite abelian group with α̂(g) = g−1ω for any fixed ω ∈ G. If we think of G as a

Frobenius object in Span, then

Z(Σg) =

{
|G|g if ωg = ω,

0 otherwise.

There is an infinite family of 2-element Frobenius objects in Span, parametrized by n ∈ N,
where

Z(Σg) = (n2 + 2)g + n2

1 + n2 .
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