Mathematics of the Falling Cat

Rajan Mehta

Pennsylvania State University

February 2, 2012
In these pictures, it appears that the cat is rotating its body. The laws of physics say that angular momentum must be conserved. Cats can't violate the laws of physics.

Question

Rademaker, Ter Braak (1935) - first solution
Kane, Scher (1969) - more realistic class of solutions
Montgomery (1993) - full mathematical theory

Rajan Mehta (Penn State)
Mathematics of the Falling Cat
February 2, 2012 3 / 13
In these pictures, it appears that the cat is rotating its body.
In these pictures, it appears that the cat is rotating its body.

The laws of physics say that angular momentum must be conserved.
In these pictures, it appears that the cat is rotating its body.

The laws of physics say that angular momentum must be conserved.

Cats can't violate the laws of physics.
In these pictures, it appears that the cat is rotating its body.

The laws of physics say that angular momentum must be conserved.

Cats can't violate the laws of physics.

**Question**

How can a cat flip its body without angular momentum?
In these pictures, it appears that the cat is rotating its body.

The laws of physics say that angular momentum must be conserved.

Cats can't violate the laws of physics.

**Question**

How can a cat flip its body without angular momentum?

- Rademaker, Ter Braak (1935) - first solution
- Kane, Scher (1969) - more realistic class of solutions
- Montgomery (1993) - full mathematical theory
The mathematical cat

A cat’s body is modeled as a pair of equal cylinders, connected by a joint (its spine). The spine can bend, but it does not twist.
The cat’s shape

The shape of the cat is given by two angles \((\psi, \theta)\).
The cat’s shape

The shape of the cat is given by two angles ($\psi, \theta$).

- $\psi$ is the angle between the two halves of the cat’s body.
The cat’s shape

The shape of the cat is given by two angles \((\psi, \theta)\).

- \(\psi\) is the angle between the two halves of the cat’s body.
- \(\theta\) describes the direction of the cat’s legs (\(\theta = 0\) when the front and back legs are closest to each other). A change in \(\theta\) corresponds to a rotation of the cat’s body around the “spinal axis”.
1 is \((\psi, \theta) = (\pi/2, 0)\).
2 is \((\psi, \theta) = (3\pi/2, \pi)\).
3 might be \((\psi, \theta) = (2\pi/3, \pi/4)\).
What about 4?
1 is \((\psi, \theta) = (\pi/2, 0)\).
1 is $(\psi, \theta) = (\pi/2, 0)$.

2 is $(\psi, \theta) = (3\pi/2, \pi)$.
1 is \((\psi, \theta) = (\pi/2, 0)\).

2 is \((\psi, \theta) = (3\pi/2, \pi)\).

3 might be \((\psi, \theta) = (2\pi/3, \pi/4)\).
1 is \((\psi, \theta) = (\pi/2, 0)\).

2 is \((\psi, \theta) = (3\pi/2, \pi)\).

3 might be \((\psi, \theta) = (2\pi/3, \pi/4)\).

What about 4?
Cat dynamics

How does the cat move?

No angular momentum: If the cat doesn’t change its shape, then it will not rotate. If the cat changes its shape, then the entire body will rotate to “cancel out” the angular momentum of the shape change.

We can consider changes in $\psi$ and $\theta$ separately.
Cat dynamics

How does the cat move?

- No angular momentum: If the cat doesn’t change its shape, then it will not rotate.
How does the cat move?

- No angular momentum: If the cat doesn’t change its shape, then it will not rotate.

- If the cat changes its shape, then the entire body will rotate to “cancel out” the angular momentum of the shape change.
Cat dynamics

How does the cat move?

- No angular momentum: If the cat doesn’t change its shape, then it will not rotate.

- If the cat changes its shape, then the entire body will rotate to “cancel out” the angular momentum of the shape change.

- We can consider changes in $\psi$ and $\theta$ separately.
A change in $\psi$ is “balanced”: the front and back halves of the body have opposite angular momentum.
A change in $\psi$ is "balanced": the front and back halves of the body have opposite angular momentum.

The cat can change $\psi$ without causing the body to rotate.
As $\theta$ changes, the front and back halves of the body are both rotating about the bent spine.
As \( \theta \) changes, the front and back halves of the body are both rotating about the bent spine.

- The total angular momentum vector is parallel to the \( y \)-axis.
As $\theta$ changes, the front and back halves of the body are both rotating about the bent spine.

- The total angular momentum vector is parallel to the $y$-axis.
- The size of the total angular momentum depends on $\psi$. 
As $\theta$ changes, the front and back halves of the body are both rotating about the bent spine.

- The total angular momentum vector is parallel to the $y$-axis.
- The size of the total angular momentum depends on $\psi$.
- The rate of rotation needed to compensate is
  \[
  \frac{\alpha \sin(\psi/2)}{\cos^2(\psi/2) + \alpha \sin^2(\psi/2)}
  \]
How the cat does it

1. It bends forward.
2. It swings its legs around until they are positioned correctly (note that its back is arched at this point).
3. It is now free to curve its back and prepare for landing.
How the cat does it

It bends forward.
How the cat does it

1. It bends forward.
2. It swings its legs around until they are positioned correctly (note that its back is arched at this point).
How the cat does it

1. It bends forward.
2. It swings its legs around until they are positioned correctly (note that its back is arched at this point).
3. It is now free to curve its back and prepare for landing.
The Kane-Scher solution
The Kane-Scher solution
Question
Can you think of a way to drop a cat so it can’t land on its feet?
Thanks. (And thanks to Eric Kuehne for the cat drawings)