Homotopy Poisson actions

Rajan Mehta

November 8, 2010
Conventional perspectives

Definition
A *Poisson structure* on a manifold M is a Lie bracket on $C^\infty(M)$ that satisfies the Leibniz rule.

Equivalently,

Definition
A *Poisson structure* on a manifold M is a bivector field $\pi \in \mathfrak{X}^2(M) = \Gamma(\wedge^2 TM)$ such that $[\pi, \pi]_{\text{Schouten}} = 0$.

Derived bracket formula:

$$\{ f, g \}_\pi = [[\pi, f], g].$$
Differential perspective

\(d_\pi := [\pi, \cdot] \) is a degree 1 operator on \(\mathfrak{X}^\bullet(M) = \Gamma(\wedge TM) \).

- \([\pi, \pi] = 0 \iff d_\pi^2 = 0 \) (\(\iff \) Lie algebroid \(T^*M \)).
- \(d_\pi \) is a graded derivation with respect to the wedge product and the Schouten bracket.

Derived bracket formula:

\[\{f, g\}_\pi = [[\pi, f], g] = [d_\pi f, g] . \]
Graded geometry perspective

\[\mathfrak{x}^\bullet(M) = \text{algebra of “smooth functions” on } T^*[1]M. \]

\(d_\pi \) is a derivation of the product structure \(\iff \) \(d_\pi \) is a vector field on \(T^*[1]M. \)

- \(d_\pi \) is deg. 1 and \(d_\pi^2 = 0 \iff \) \(d_\pi \) is homological
 \((T^*[1]M, d_\pi) \) is an \(NQ \)-manifold.
- \(d_\pi \) is a derivation of Schouten \(\iff \) \(d_\pi \) is symplectic.

Definition
A Poisson structure on \(M \) is a homological symplectic vector field on \(T^*[1]M. \) \((T^*[1]M, \omega, d_\pi) \) is a deg. 1 symplectic \(NQ \)-manifold.

Definition
A Poisson structure on \(M \) is a degree 2 function \(\pi \) on \(T^*[1]M \) such that \([\pi, \pi] = 0.\)
Cattaneo-Zambon: Poisson reduction = (super)symplectic reduction of $T^*[1]M$

For moment map reduction, they considered DGLA actions. If the comoment map $\mathfrak{g} \to C^\infty(T^*[1]M)$ is a DGLA map, then π passes to the quotient.

We also want to include Poisson-Lie group/Lie bialgebra actions.

- dg-group = Q-group = (graded) Lie group with multiplicative vector field, $[Q, Q] = 2Q^2 = 0$.
- Poisson-Lie group = Lie group with multiplicative bivector field, $[\pi, \pi] = 0$.
- homotopy Poisson-Lie group = Lie group with multiplicative multivector field, $[\pi, \pi] = 0$.
Homotopy Poisson manifolds

Let \mathcal{M} be a graded manifold.

Definition

A *homotopy Poisson* (*hPoisson*) structure on \mathcal{M} is any of the following equivalent things:

- an L_∞ algebra structure on $C^\infty(\mathcal{M})$ where the brackets satisfy the Leibniz rule.
- a homological symplectic vector field on $T^*[1]\mathcal{M}$.
- a degree 2 function π on $T^*[1]\mathcal{M}$ such that $[\pi, \pi] = 0$.

Write $\pi = \sum \pi_k$, where $\pi_k \in \mathfrak{X}^k(\mathcal{M})$. Then we have the derived bracket formula

$$\{f_1, \ldots, f_k\}_\pi = \cdots [[\pi_k, f_1], f_2], \ldots f_k] = \cdots [d_\pi f_1, f_2], \ldots f_k].$$

Note: the “homological” degree of π_k is $2 - k$.
Examples

Example
A graded (deg. 0) Poisson manifold is an hPoisson manifold. Note: For ordinary manifolds, then hPoisson = Poisson.

Example
Q-manifolds/dg-manifolds, e.g. $A[1]$ if A is a Lie algebroid.

Example
A QP-manifold is a Poisson manifold equipped with a homological Poisson vector field, e.g. $T^*(A[1])$ if A is a Lie algebroid.
Another example

Example
If \(\mathcal{V} = \bigoplus V_i[i] \) is an \(L_\infty \)-algebra, then \(\mathcal{V}^* = \bigoplus V_i^*[-i] \) is a (linear) hPoisson manifold. \(T^*[1](\mathcal{V}[1]) = T^*[1](\mathcal{V}^*) \).

Remark
If \(\mathcal{M} \) is hPoisson, then \(T^*[1]\mathcal{M} \) is a degree 1 symplectic Q-manifold, but generally has negative degree coordinates even if \(\mathcal{M} \) is \(\mathbb{N} \)-graded.

c.f. Roytenberg-Severa correspondence

\[
\{ \text{Poisson manifolds} \} \leftrightarrow \{ \text{deg. 1 symplectic NQ-manifolds} \}
\]
Morphisms

Definition
A (strict) morphism of hPoisson manifolds from \((\mathcal{M}, \pi)\) to \((\mathcal{M}', \pi')\) is a graded manifold morphism \(\psi : \mathcal{M} \to \mathcal{M}'\) such that

\[
\psi^* \{f_1, \ldots, f_k\}_{\pi'} = \{\psi^* f_1, \ldots, \psi^* f_k\}_{\pi}
\]

for \(f_1, \ldots, f_k \in \mathcal{C}^\infty(\mathcal{M}')\).

Equivalently, \(\pi \sim \pi'\).

Weak morphisms??
hPoisson-Lie groups

Definition
A *hPoisson-Lie group* is a graded Lie group G equipped with a hPoisson structure such that the multiplication map $\mu : G \times G \to G$ is a hPoisson morphism.

Examples
Poisson-Lie groups, Q-groups/dg-groups,...

Definition
A *hPoisson-Lie group* is a graded Lie group G where $T^*[1]G$ is equipped with a multiplicative homological symplectic vector field, or equivalently, a degree 2 multiplicative function ϕ such that $[\phi, \phi] = 0$.

“Multiplicative” refers to the groupoid structure $T^*[1]G \rightrightarrows g^*[1]$.
Homotopy Lie bialgebras

A multiplicative homological symplectic vector field d_ϕ on $T^*[1]\mathcal{G} \Rightarrow g^*[1]$ lives over a homological Poisson vector field \hat{d}_ϕ on $g^*[1]$, which can be thought of as a differential on $\mathcal{C}^\infty(g^*[1]) = S(g[-1])$ (think $\wedge g$).

\hat{d}_ϕ Poisson \iff derivation of the Schouten-Lie bracket.

Definition

A \textit{homotopy Lie bialgebra} is a graded Lie algebra g equipped with a differential δ on $S(g[-1])$ that is a derivation of symmetric product and the Schouten-Lie bracket.

- If δ is linear, then g is a DGLA (= Lie Q-algebra).
- If δ is quadratic, then g is a graded Lie bialgebra.
- In general, the derivation property expresses a compatibility between a graded Lie algebra structure on g and an L_∞-algebra structure on g^*.
Let M be a hPoisson manifold, and let G be a hPoisson-Lie group.

Definition
An action $\sigma: M \times G \to M$ is *hPoisson* if σ is a hPoisson morphism.

Infinitesimal version: Let g be a homotopy Lie bialgebra.

Definition
An action $\rho: g \to \mathfrak{X}(M)$ is a *homotopy Lie bialgebra action* if the extension $\hat{\rho}: S(g[-1]) \to \mathfrak{X}^\bullet(M)$ respects differentials.

Lemma
Suppose that G has a free and proper hPoisson action on M. Then the quotient M/G inherits a hPoisson structure.
Hamiltonian actions

Let S be a degree 1 symplectic Q-manifold. Let (G, ϕ) be a connected hPoisson-Lie group with a Hamiltonian action on S with moment map $\mu : S \rightarrow \mathfrak{g}^*[1]$.

Recall that $\mathfrak{g}^*[1]$ has a homological vector field \hat{d}_ϕ.

Definition
The action is called Q-Hamiltonian if μ is a Q-manifold morphism. Equivalently, $\mu^* : S(\mathfrak{g}[-1]) \rightarrow C^\infty(S)$ respects differentials.

Theorem
*If G is flat and the action is Q-Hamiltonian (+ regular value, etc.), then the homological vector field on S descends to the quotient $\mu^{-1}(0)/G$.***

Nonflat \iff reduction at nonzero values?
Let \mathcal{M} be a hPoisson manifold, and let \mathcal{G} be a flat hPoisson-Lie group with a free and proper hPoisson action on \mathcal{M}.

\rightsquigarrow (shifted) cotangent lift action $\mathcal{G} \bowtie T^*[1]\mathcal{M}$.

Theorem

The cotangent lift action is Q-Hamiltonian, and the reduced symplectic Q-manifold is $T^*[1](\mathcal{M}/\mathcal{G})$.

Example

If M is a Poisson manifold and G is a Poisson-Lie group with a free and proper Poisson action on M, then the Poisson quotient M/G can be interpreted as arising from the “Q-symplectic quotient” $T^*[1]M//G$.
Higher hPoisson structures

Let \mathcal{M} be a graded manifold.

Definition
A *degree n hPoisson structure* on \mathcal{M} is a degree $n + 1$ function π on $T^*[n]\mathcal{M}$ such that $[\pi, \pi] = 0$.

degree n hPoisson-Lie groups can do Q-symplectic reduction on degree n symplectic Q-manifolds.

Example
Bursztyn-Cavalcanti-Gualtieri notion of “extended action with moment map” for reduction of Courant algebroids. (In this case, the deg. 2 homotopy Lie bialgebra is a DGLA.)
The quadratic case

Example

Quadratic deg. 2 homotopy Lie bialgebras correspond to "matched pairs" of Lie algebras.

Interesting example of Courant reduction by "matched pair action"?
Thanks.